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General Introduction

Among all organs, the brain is the most dependent on continuous oxygen a
glucose supply. At rest, the brain uses around 20% of the total energy ¢
sumptiort-?, while there are almost no energy reserves. Cerebral function fails
within a few seconds after cessatation of cerebral blood flow, and witttrb3
minutes cortical damage becomes irreversibNeurological injury caused by
global ischemia is known as postanoxic encephalopathy. The severitg of th
postanoxic encephalopathy is mainly determined by the duration and depth of
the decrease in cerebral blood flow. Therefore, in patients with caadiast,

the time from cardiac arrest to return of spontaneous circulation is veryrimpo
tant for the neurological outcorie Patients with postanoxic encephalopathy
who do not immediately regain consciousness after restoration of blood flow
are admitted to the intensive care unit (ICU) for further treatment. Despite in-
tensive treatment, in 50—-60% of these patients consciousness will naver re
due to severe ischemic brain injdrs:.

Early pathophysiological processes during ischemia include functieal n
ronal impairment, which is followed by structural failure in a later stage. The
first functional process to fail is synaptic transmissiowhich requires about
44% of the brain’s energy consumptforin mild ischemia, failure of synaptic
transmission might be the onlyfect?. The changes of synaptic function are
assumed to be reversible if blood flow is restored in time, however prolonged
ischemia can lead to persistent synaptic faift®é When the other energy
dependent processes fail as well, cell swelling will occur, which eatigtu

will lead to cell death.

The only treatment of proven benefit to improve outcome in patients with
postanoxic encephalopathy is mild therapeutic hypothétrfiaDuring mild
therapeutic hypothermia the body temperature is actively loweredto 28



a period of 24 hours. Treatment with hypothermia protects the brain against
secondary ischemic injury byffecting various steps of the ischemic cascade.
Hypothermia &ects several metabolic pathways, inflammatory reactions and
apoptosis processes, and it promotes neuronal intégrity

During hypothermia and passive rewarming till normal body temperature af-
terwards, patients are sedated. Once a patient is at normothermia, sedation
is stopped. If the patient does not awake after rewarming, the clinicians ar
confronted with the question whether the remaining neurological injury is still
reversible. At some point, the treating clinician has to make tfedit deci-

sion whether continuation of medical treatment is still worthwhile. Early and
reliable prediction of the neurological outcome is therefore highly relemaaht

can prevent unjustified discontinuation of medical treatment as well as eontin
uation of futile medical treatment. Thereby, it decreases unnecesdarstag

and medical costs, and shortens the time of uncertainty for the patient’s family.

In patients treated with hypothermia neurological evaluation is limited. Several
studies showed that the use of clinical parameters, such as the motgr score
have become unreliable as prognostic parameters since the introduction of
therapeutic hypothermta4 Also the use of biochemical parameters (with
the current cut-fi values) has become less reliable since the introduction of
hypothermid31>18 A possible explanation for the lower reliability of these
clinical and biochemical markers might be the long time that is needed before
the sedatives are completely worff o these patients. The use of imaging
methods is not without risk in ICU patients, because the patients have to
be transported from the ICU to the scanner. Furthermore, imaging methods
give only a snapshot of the dynamic ischemic process. Even more important,
with imaging methods only structural failure can be observed, while fundtiona
failure is not assessed. Clinical neurophysiology has provided twoitpobs,
which do allow evaluation of the functioning of the nervous system in these pa
tients: the somatosensory evoked potential (SSEP) and the electroaloceph
gram (EEG).

Somatosensory evoked potential

The somatosensory evoked potential (SSEP) is a small electrical sidira (
50 uV) that can be recorded non-invasively from the skull, after givingta s
of electrical stimuli to one of the peripheral nerves. Measurement of #PS
evaluates the complete pathway from the peripheral sensory nervstigsnsy



to the sensory cortex that runs via the dorsal column lemniscal pathway via
the spinal cord, brainstem and thalarhi*€ The earliest cortical potential

is the N20, which is generated in the primary somatosensory cortex, where
thalamocortical cells make synaptic connections with the superficial and deep
pyramidal cell layer$®2%. In comparison to the later cortical responses, the
N20 is the most robust and is the latest waveform to disappear duringgcre
ing levels of encephalopathy. Furthermore, the N20 is relatively indegpegnd

on the level of sedatiof.

Bilateral absence of the N20 has been identified as the most powerdlidore

of poor outcome in patients who are unconscious after circulatory arotst
being treated with hypothermia, with a false positive rate of %% In
patients treated with therapeutic hypothermia, absence of the N20 at & hour
after cardiac arrest also indicates a poor prognosis. In two larg@gutse
studies, including 228 patients, the median nerve SSEP at normothermia was
found to be a reliable tool to predict poor neurological outcome, with a false
positive rate of 0%?22 However, a retrospective study of Leithner in 122
available SSEPs revealed one patient treated with therapeutic hypothermia
after cardiac arrest with bilateral absent N20 responses at day 3 waith g
neurological outcon®. Despite this single case, pooled analysis of these
three recent studié$?324on cardiac arrest patients after hypothermia still
gives a very low false positive rate of 0.9%, indicating that bilateral ateseh

the N20 should be viewed as a reliable predictor for poor outcome in patients
treated with hypothermia.

Unfortunately, preservation of the N20 does not imply a favourable awtco
in patients after cardiac arrest. In fact, only a small proportion of patieitits w
a poor outcome after resuscitation has negative SSEP responses gasudtin
low sensitivity of this parameter for the prediction of poor outcome. This low
sensitivity might be explained by selective vulnerability of synapses. T2t N
response is dependent on the thalamocortical synapses in the primsoyysen
cortex. Therefore, the SSEP does not give information on the functjasfin
the intra-cortical synapses, which are more vulnerable to isct€mia

Electroencephalography

The electroencephalogram (EEG) measures the spontaneous eledttical
ity of the brain through the skull. In general, the EEG measures potential
differences originating from synaptic activity of the pyramidal cells of the cor-



tex!. Thereby the EEG directly reflects the functioning of cortical synapses,
which is the process that is the most sensitive for ischemia. The dendrites
of the pyramidal cells almost permanently receive synaptic input. This in-
put induces excitatory or inhibitory postsynaptic potentials. Currentseteri
from synapses move through the dendrites and cell body to the axoraasd p
through the membrane to the extracellular space along the way, resulting in a
current dipole. The electric activity generated by a single neuron is tolbtema

be picked up by EEG. However, pyramidal cells synchronize their acavity

the neurons in the cortex are uniformly oriented, perpendicular to thexcorte
resulting in stficiently large extracellular currents to allow recording of scalp
potentials.

Since the EEG measures spontaneous brain activity, the EEG can betused a
the bedside of the patient for continuous monitoring of the brain. In addition,
the EEG has a high time-resolution. Evolution of EEG patterns, starting with
the period during hypothermia, might therefore provide clinically relevant in
formation regarding recovery from postanoxic coma.

Several studies indicated that EEG monitoring might have a role in the progno-
sis of neurological outcome. However, previously studied EEG chairstote
varied widely and in most studies it is unclear at which time after cardiactarres
these were measured, which makes ftidilt to convert these results into
clinical guidelines. In general, continuous patterns are associated with go
neurological outcome, both during hypothermia and at normothéfrfia?®

In contrast, flat EEGs, burst suppression EEGs and status epileptinas a
mothermia are associated with poor neurological outdérfrs28

One of the disadvantages of the EEG is the complexity of the signal. The
EEG signals can only be reliably interpreted by an experienced electroen-
cephalgraphé®. In a standard EEG, 19 channels of EEG registrations are
displayed in pages of 10 seconds. Therefore, the interpretation thaons

EEG registrations of at least 24 hours is time-consurtfin. To reduce the
time needed for EEG interpretation, the addition of quantitative EEG analysis
to the standard visual analysis of the EEG might play an important¥ofe
Another advantage of quantitative EEG analysis is that it makes the analysis
more objectivé®-3C,



Goals

This thesis is subdivided into three parts, each with its own corresponding
goal. The first goal is to evaluate whether the EEG can improve the prediction
of neurological outcome in patients after cardiac arrest. To be usefiihioad
practice, the false positive rate of the EEG for predicting poor outcomadho

be 0% (or lower than 0.9% comparable to the false positive rate of the SSEP),
while the sensitivity should be high. To have added value to the SSEP mea-
surement, the EEG should at least correctly predict poor neurologitadme

in some of the patients with present SSEP responses. In addition, wetevalua
whether the EEG can be used for the prediction of good neurologicalmetc

The second goal of this thesis is to evaluate whether quantitative EEG ignalys
can assist in the classification of EEG patterns and prediction of the ngurolo
ical outcome in patients after cardiac arrest.

Describing and scoring the EEG for prognostic purposes can be gefulu
and gives us information on the severity of the ischemia. However, it is still a
general and descriptive assessment of EEG patterns resulting froemsc
Understanding the generation of specific EEG patterns increases thiet insig
in the pathophysiological processes resulting from ischemia. The thidd goa
of this thesis is to explore if computational modelling can help us to discover
what type of brain injury is reflected by a specific EEG pattern.

Outline of thesis

Part I: Clinical Studies

In this part we describe our clinical studies in which we evaluated the prog-
nostic value of continuous EEG registrations in patients with postanoxic coma
after cardiac arrest. Chapter 2 describes a cohort of 60 patients ih wiic
evaluated the prognostic value of continuous EEG registrations and SSEP me
surements. Chapter 3 describes our analysis of a distinct EEG patterst-“b
suppression with identical bursts”, and its potential prognostic role in {heese
tients. Chapter 4 gives the results of a large cohort study to the progvalstéc

of EEG performed in two hospitals (Medisch Spectrum Twente, Enschade,
Rijnstate Hospital, Arnhem). In this study, in which we included 148 patients,
we wished to confirm our earlier findings of Chapter 2, combined with the new
criteria given in Chapter 3.



Increased use of EEG monitoring for prognostic purposes also leads to in
creased detection of electroencephalographic seizure patterns vétpivés
unclear whether treatment of electroencephalographic seizure patigns
anti-epileptic drugs improves outcome in these pati&nt& Chapter 5 de-
scribes a retrospective study to theeet of treatment with anti-epileptic drugs

in comatose patients after cardiac arrest with electroencephalograjziese
and status epilepticus.

Part II: Signal Analysis

Part 1l of the thesis describes the development and implementation of two
automated systems for EEG analysis in the ICU. The first one, described in
Chapter 6, is developed for ICU patients in general. With this method, a first
classification of the raw EEG is made. The second one, described in €Aapte

is made with the specific purpose of rating the EEG of comatose postanoxic
patients for prognostic purposes.

Part 1ll: Computational Modelling

Chapter 8 describes our study with a computational meanfield model to sim-
ulate generalized periodic discharges, which is a specific EEG patteris that
often observed in patients after acute global ischemia.
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Abstract

Objective: To evaluate the value of continuous electroencephalog(Eity)

in early prognostication in patients treated with hypothermia after cardiac ar-
rest.

Design: Prospective cohort study.

Setting: Medical Intensive Care Unit (ICU).

Patients: Sixty patients admitted to the ICU for therapeutic hypothermia after
cardiac arrest.

Intervention: None.

Measurements and Main Results: In all patients continuous EEG and daily so-
matosensory evoked potentials (SSEP) were recorded during thedags ®f
admission or until ICU discharge. Neurological outcomes were basedatn e
patient’s best achieved Cerebral Performance Category (CP@ within 6
months. Twenty-seven out of 56 patients (48%) achieved good neigalog
outcome (CPC 1-2). At 12 hrs after resuscitation, 43% of the patients with
good neurological outcome showed continuouude slowed EEG rhythms,
while this was never observed in patients with poor outcome. The sensitivity
for predicting poor neurological outcome of low voltage and iso-electriG EE
patterns 24 hrs after resuscitation was 40% (95% confidence interljal (C
19%—64%) with a 100% specificity (Cl: 86%-100%), while sensitivity and
specificity of absent SSEP responses during the first 24 hrs were(@#%
10%—44%), and 100% (Cl: 87%—100%), respectively. The negptedictive
value for poor outcome of low voltage and iso-electric EEG patterns was 68%
(Cl: 50%—-81%), compared to 55% (Cl: 40%—60%) for bilateral SSERd®e,

both with a positive predictive value of 100% (Cl 63%-100% and 59%%100
respectively). Burst suppression patterns after 24 hrs were asoiated with
poor neurological outcome, but not inevitably so.

Conclusions: In patients treated with hypothermia, EEG monitoring during
the first 24 hrs after resuscitation can contribute to the prediction of baith go
and poor neurological outcome. Continuous patterns within 12 hrs predicte
good outcome. Iso-electric or low voltage EEGs after 24 hrs predicted poo
outcome with a sensitivity almost two times larger than bilateral absent SSEP
responses.



Introduction

Mild therapeutic hypothermia (TH) improves the neurological outcome in co-
matose patients after cardiac arfesmnevertheless survival rates remain poor.
In 40%—-66% of patients treated with TH after cardiac arrest, consciesisne
never returns despite treatmém Early identification of patients with poor
neurological outcome can prevent continuation of futile medical treatment,
decrease Intensive Care Unit (ICU) stay and medical costs, anteshbe
time of uncertainty for the patient’s family. Early and reliable prognostication
is therefore highly relevant, and treating physicians are indeed oftérooted

with the question whether continuation of treatment is worthvétile

However, early prognostication remains challenging, especially sincadhe p
dictive values of clinical, biochemical, and electrophysiological paramefers
poor outcome have become uncertain since the introduction &ffH At
present, only a bilateral absent short latency somatosensory evokesgt p

tial (SSEP) response is highly predicthe'® probably even at 24 hrs after
resuscitation in patients treated with #. Unfortunately, only a small
proportion of patients with a poor outcome after resuscitation have negative
SSEP responses as the sensitivity is approximately 20%—-25%. This results
in continuation of treatment in a significant fraction of patients with eventu-
ally unfavorable recovery, motivating the need for more sensitive pradic
Clearly these predictors need to have a specificity of 100%, similar to bilateral
absence of the SSEP.

The electroencephalogram (EEG) reflects part of the function of ebrieu-
ronst’, which are the most sensitive for ischemia. It was recently found that
absent EEG background reactivity to painful stimulation, was associated w
poor outcome after cardiac arrest, predicting poor outcome with a sensitivity
of 75% and a specificity of 10088, Following transient cerebral ischemia a
complex series of pathophysiological events occurs, that evolve inditie
Part of these changes and neuronal recovery can be observecbwithuous
EEG monitoring. Evolution of EEG patterns, starting with the period during
therapeutic hypothermia, may therefore provide clinically relevant informatio
regarding recovery from postanoxic coma.

We performed a prospective cohort study to explore if continuous EES-mo
toring and the changes in the EEG dynamics may serve as improved predictors
for neurological outcome in patients treated with TH after cardiac arrest.



Materials and Methods

Design

From June 2010 to July 2011 we conducted a single center, prospehive
study in patients who were treated with TH after cardiopulmonary resuscita-
tion. The study setting was the 18 bed general and 10 bed thorax inteaséve
unit (ICU) of the Medisch Spectrum Twente, Enschede, the Netherlards
Institutional Review Board waived the need for informed consent foGEE
monitoring during ICU stay. However, for additional electrophysiological
and clinical evaluation after discharge from the ICU, local institutionaksgv
board approval and written informed consents were obtained.

Patients

Consecutive adult patients (agl8 yrs), who were resuscitated after a cardiac
arrest, remained comatose, were admitted to the ICU, and received TH were
included. Exclusion criteria were other neurological injuries such am bra
hemorrhages or traumatic head injury, or any known history of sever®ne
logical disorders, brain surgery or brain trauma.

Treatment

Patients were first evaluated by a cardiologist in the emergency depagntent
treated according to current standard therapy. Patients were thefietradgo

the ICU for TH. According to our protocol, comatose survivors aretéie:a
with TH regardless of the initial cardiac rhythm or the location of arrest (in-
hospital or out-of-hospital). Hypothermia of @3 was induced and maintained
for 24 hrs by intravenously administering 2 liters of cold saline and by using
cooling pads. Thereafter, patients were passively rewarmed at a maxdamum
0.5°C/hr to normothermia. According to local protocols, propofol and fentanyl
or remifentanil were used for sedation and against shivering, until ddg b
temperature had reached 3835 Sedation was aimed at a level equivalent to
a score of-4 (deep sedation) o5 (unarousable) at the Richmond Agitation
Sedation Scale (RAS%}?. On indication, a nondepolarising muscle relaxant
(rocuronium) was used intermittently to avoid compensatory shivering. The
decision to give a muscle relaxant was made by the treating physician, ind no
based on the EEG. Stable patients who regained consciousness wegtaxktu
when they were able to protect their airway and the airway was patent.



EEG

EEG recordings were started as soon as possible after the patientsl arri

the ICU and continued up to 5 days or until discharge from the ICU. Twenty
one silver-silverchloride cup electrodes were placed on the scalpdiagdo

the international 10—-20 system. Recordings were made using a Neurocente
EEG recording system (Clinical Science Systems, Voorschoten, the iNethe
lands). For practical reasons, EEG recordings were not startedt laighd.
Instead, for patients admitted to the ICU after 11 p.m., the recordings were
started the next morning at 7 a.m.

All EEG analyses were performed after the registrations. EEG data pteoyed
role in actual prognostication of outcome or treatment decisions. Howtheer,
treating physicians were not completely blinded to the EEG to allow treatment
of epileptiform discharges. Treatment of epileptiform discharges wastlef
the discretion of the treating physician. Afterwards, 5 min EEG epochs were
automatically selected every hour during the first 48 hrs after resuscitatobn
every 2 hrs during the remainder of the registration. All epochs weralysu
scored by an experienced electroencephalographer in random blidded

to the point in time of the recording and blinded to the patient who the epoch
belonged to. Each epoch was placed in one of the following categories: iso
electric, low voltage, burst suppressionffdse slowing, normal, or epilepti-
form discharges. Each epoch could only be classified into one catagdry
the reviewer was allowed to skip the epoch if it contained too many artifacts
for a clear classification. Iso-electric epochs were defined as epatieut

any visible EEG activity. Low voltage epochs were defined as epochs with
EEG activity below 2QuV. Burst suppression was defined by the presence of
clear increases in amplitude (bursts), followed by inter-burst intervakst of
least 1 sec with low voltage activity (suppressions). Bursts were refjtore
have EEG amplitudes higher than 20, otherwise the epoch was categorized
as low voltage. Ofuse slowing was defined as a continuous EEG pattern with
a dominant frequency below 8 Hz. Epileptiform discharges included resizu
and generalized periodic discharges (GPDs).

Somatosensory Evoked Potential

Daily SSEP measurements were performed during the first 5 days of the ICU
stay or until discharge from the ICU. The SSEP was measured afterieéctr
stimulation of the right and left median nerve using a bipolar surface electrod
at the wrist. Stimulus duration was 0.3 msecs and stimulus amplitude was



adjusted until a visible twitch was produced. Two sets 200 responses were
averaged, band pass filtered between 0.1 Hz and 2.5 kHz, and notadfilter
around 50 Hz. Stimulus frequency was set at 1.7 Hz. Silver-silverclelarigp
electrodes were placed at the elbow, Erb’s point, cervical spine &08)2 cm
posterior to C3 and C4 (C3’ and C4’). Fz was used as a referenceoelec
SSEP recordings were made using a Nicolet Bravo system (Viasys, tHoute
the Netherlands).

Outcome assessment

Standard neurological examination was performed daily during the ICU stay
Follow-up was performed after 1, 3 and 6 months. The outcome assessment
after 1, 3 and 6 months after resuscitation was always done by the saroe auth
(MCC). At 1 or 3 months, the CPC score was determined during a personal
meeting, or based on a telephone call. The outcome assessment after six
months was always based on a telephone call. The primary outcome measure
was the best score within 6 months on the five point Glasgow-Pittsburgh Cere
bral Performance Categories (CP€) Outcome was dichotomized between
“good” and “poor”. A “good” outcome was defined as a CPC score of 2

(no or moderate neurological disability), and a “poor” outcome as a CBf@ sc

of 3, 4, or 5 (severe disability, comatose or death).

Statistical Analysis

Collected baseline characteristics include age, sex, weight, locationdicar
arrest (in hospital versus out of hospital), cause of cardiac aarekinitial
cardiac rhythm. Body temperature and drug registration during ICU stegy we
evaluated as well.

The following variables were compared between the groups of patients with a
good neurological (CPC 1-2) outcome and poor neurological (CPT@#5
come: Age, sex, percentage of out of hospital cardiac arrest, chgsediac
arrest, initial rhythm, start time of EEG recording, duration of EEG recardin
and the maximum dose of sedative and analgesic drugs during the first 24 h
after cardiac arrest. Statistical analysis was performed using a Peainson
Square test or a Fisher's Exact test for the parameters that wereeahgA
Pearson Chi-Square was used when no subgroup had an expegttdess

than 5, else a Fisher's Exact test was used. An independest or a Mann-
Whitney U test was applied when the parameters were continuous. A Mann-
Whitney U test was performed in cases were the parameter was not normally
distributed.



To evaluate the value of EEG in early prognostication, sensitivities, specific
ties, positive and negative predictive values, and their 95% confidetereals
(95% CI) were calculated for theftlerent EEG patterns at 12 and 24 hrs af-
ter cardiac arrest. Those were compared to the sensitivity and specificity o
absent short-latency (N20) SSEP responses within 24 hrs for pregjmtior
neurological outcome. Note that all mentioned time periods start at the time of
cardiac arrest.

Results

Sixty consecutive patients were included in the study. Of these, four patien
were excluded in a later stage, two because of intracerebral hemes:hawe
because of technical problems during the EEG registration and the last one
because of death within the first hour of registration. None of the remaining
56 patients was lost during follow-up. Twenty-seven patients (48%) had a
good neurological outcome (best CPC score within 6 mogt)s Two of

them died within the first month due to cardiac failure, and orfkesed from a
cerebral vascular accident after he recovered and was traetstera nursing
home. The other 24 patients with good neurological were all able to return
to their homes and were still alive after 6 months. Poor outcome occurred
in 29 patients, where one patient had severe neurological disabilities (CPC
3) before he died from cardiac failure; the remaining twenty-eight patients
never regained consciousness (CPC 4-5) and died within the first mimth.
overview of the patient and measurement characteristics is given in Tdble 2

SSEP during hypothermia

Bilateral absence of the cortical N20 SSEP response was presentein se
patients within the first 24 hrs (Table 2.2A). All of them had a poor outcome
and in none of them the N20 returned in later SSEP measurements. The sen-
sitivity of bilateral absent N20 responses during hypothermia for ptiadic

poor neurological outcome was 24% with a specificity of 100%. The negativ
predictive value of a bilateral absent SSEP was 55%, with positive pinedic
value of 100% (Table 2.3).

EEG patterns

An overview of the trends in EEG patterns in patients with poor and good
neurological outcome is given in Figure 2.1. Some EEG epochs were exclud
from analysis because of artifacts, this occurred in 4% of the epochs.



Table 2.1:

Comparison between patient characteristics, measurement chistesteand

sedation levels between the patients with good neurological outcome ancdh@amlogical

outcome.

Poor neurological
outcome (Cerebral

Performance

Good neurological

outcome (Cerebral
Performance

Category score 3-5) Category score 1-2) p

Number of patients
Number of male

Age (yrs)

Number of out-of-hospital cardiac
arrest

Initial Rhythm
Ventricular fibrillation
Asystole
Bradycardia
Unknown

Presumed cause of cardiac arrest
Cardiac
Other origin
Unkown

Start of EEG registration after cardiac
arrest (hr)

Duration of EEG registration (hrs)

Patients sedated with propofol
Propofol dose (mypr/kg)

Patients treated with fentanyl
Fentanyl doseug/hr/kg)

Patients treated with remifentanil
Remifentanil doseyg/hr/kg)

29
21 (72%)
70 (std 12)

(range: 44-86)

23 (79%)

17 (59%)
6 (21%)
5 (17%)
1 (3%)

16 (55%)
6(21%)
7 (24%)
6 (std 3)
(range: 2-13)
54 (std 38)

(range: 2-136)

2@7%)
2.6 (std 1.1)

(range: 1.0-6.2)

17 (58%)
1.7 (std 1.1)

(range: 0.7-4.7)

12 (41%)
5.0 (std 3.2)

(range: 1.9-13.3)

27
17 (63%)
66 (std 11)

(range: 45-88)

26 (96%)

24 (89%)
0 (0%)
0 (0%)

3 (11%)

25 (93%)
0 (0%)
2 (7%)

7 (std 4)

(range: 2-21)

75 (std 21)

(range: 38-108)

27 (100%)
2.9 (std 0.9)

(range: 0.2-4.8)
16 (59%)

1.9 (std 0.6)

(range: 0.7-2.7)
12 (44%)

8.5 (std 4.7)

(range: 2.5-14.7)

45

.10

.001

.004

.51

.01

1.00
.33

.96

.82
.07

2 In contrast to the sedation protocol, one patient with poor neurologitebme was sedated

with midazolam (37ug/hr/kg) instead of propofol.

midazolam (27.4-63.8g/hr/kg) additional to the sedation with propofol.

In both groups two patients received

Within 12 hrs after resuscitation, 44% of the patients with good neurological
outcome showed a continuous pattern, while at this stage none of the patients
with poor neurological outcome showed a continuous pattern (Table 2.2B).
Therefore, the presence of a continuous EEG pattern after 12 hig loeu
used to reliably predict good neurological outcome (Table 2.3).



Table 2.2: Somatosensory evoked potential results and electroencephalogtemgpdor
patients 12 and 24 hrs after resuscitation.

Time After  Poor neurological Good neurological
Resusci- outcome (Cerebral outcome (Cerebral
tation Performance Performance
(hrs) Category score 3-5) Category score 1-2)

A: SSEP: bilateral absent N20 vs. present N20
SSEP N20 absent <24 7 0
SSEP N20 present <24 22 27

B: EEG after 12 hrs: iso-electric, low voltage or burst suppressiorEEG vs. continuous
EEG patterns?

EEG iso-electric or low- 12 26 13
voltage or burst suppression
EEG continuous 12 0 10

C: EEG after 24 hrs: iso-electric or low voltage EEG vs. burst suppession or conti-
nuous EEG patterns

EEG iso-electric or low- 24 8 0
voltage

EEG burst suppression or 24 12 26
continuous

D: EEG after 24 hrs: iso-electric, low voltage or burst suppressiorEEG vs. continuous
EEG patterns®

EEG iso-electric or low- 24 19 1
voltage or burst suppression
EEG continuous 24 1 25

EEG, electroencephalogram; SSEP, somatosensory evoked potential.

@ Three patients with poor neurological outcome were missing: one alrdiady two due
to EEG artifacts. Four patients with good neurological were missing: twausecthe EEG
registration was started after 12 hrs, two due to artiffdiine patients with poor neurological
outcome were missing: six already died, two due to artefacts and one diagistical
problems. One patient with good neurological was missing due to logistichlgms.

Within 24 hrs after resuscitation, 40% of the patients with poor neurological
outcome still showed an iso-electric or low-voltage EEG pattern, while none
of the patients with good neurological outcome showed one of these patterns
at this stage (Table 2.2C). The sensitivity of low voltage or iso-electric EEG
patterns for predicting poor neurological outcome after 24 hrs was 4o w

a specificity of 100% (Table 2.3). The negative predictive value was &8d6

the positive predictive value 100%.

All patients with good neurological outcome, except one, (95%) showed im-
provement towards a continuous slowed pattern within 24 hrs after resusc
tion (Table 2.2D). An example is shown in Figure 2.2. In contrast, all patients
with poor neurological outcome, except one, (96%) showed burgtresgion,

low voltage, or iso-electric EEG patterns during the first 24 hrs aftesoétsu



Table 2.3: Sensitivity, specificity and predictive values for early prediction of gand poor
neurological outcome.

Time after Positive  Negative
resusci- predicting predicting
tation Sensitivity Specificity — value value
(hrs)  Predicting (95% Cl) (95% Cl) (95% CI) (95% CI)
Somatosensory <24 Poor 24 100 100 55
evoked outcome (10-44) (87-100) (59-100) (40-60)
potential
N20 absent
EEG continuous 12 Good 43 100 100 67
outcome (23-66) (86-100) (69-100) (50-81)
EEG iso-electric 24 Poor 40 100 100 68
or low-voltage outcome (19-64) (86-100) (63-100) (51-82)
EEG iso-electric 24 Poor 95 96 96 95
low-voltage outcome (75-100) (80-100) (80-100) (75-100)
or burst

suppression
Cl, Confidence interval; EEG, electroencephalogram.

Good neurological outcome: CPC 1-2
n=20 n=23 n=24 n=26 n=27 n=

n=il U -

6 12 18 24 [ Epileptiform

=
o
O

% patients
0
O

Poor neurologlcal outcome: CPC 3-5 [__|Burst suppression
» 100] n=22 n=26 n=19 n=20 n=20 n= n=10 I Low voltage
£ I 1so—electric
g s0f
S
0

6 12 18 24
Time after resuscnatlon (h)

Figure 2.1: Trend in EEG patterns for patients withffidirent neurological outcomes. Top:
patients with good neurological outcome (Cerebral Performance @stggPC] score 1-2).
Bottom: patients with poor neurological outcome (3-5). In all patients withndicuous EEG
pattern after 12 hrs (fiuse slowing or normal, top panel), outcome was good. In all patients
with iso-electric or low voltage EEG after 24 hrs (bottom panel), outcomepsas. Burst-
suppression at 24 hrs is also associated with poor outcome, but doesadlo a specificity of
100%.

tion (Table 2.2D). In eight of them, the EEG improved to a continuous pattern
in a later stage within 48 hrs. Six of those patients showed a low voltage



Patient number 15

A) 7 hours after resuscitation B) 19 hours after resuscitation C) 70 hours after resuscitation

\

Propofolt- | 20 | [ 120 160 [ 40 ] —{mg/h
Fentanyl | 200 | — ug/h

0 24 48 72 96
Time after resuscitation (h)

Figure 2.2: Example of the evolution of electroencephalogram (EEG) patterns ofnpatie
number 15 with a good neurological outcome (Cerebral Perform@ategory score 1). The
EEG pattern is improving from a low voltage and burst suppression patterdifuse slowed
pattern before the end of the hypothermia period. From top to bottomh(&eTexamples of the
EEG at diferent points in time to demonstrate the evolution of the EEG patterns over tljne. (
Trend line of EEG pattern based on visual interpretation of 5 min epollasm( normal,Slow
diffuse slowedEpilept, epileptiform dischargesBurst burst suppressior,ow, low voltage,
Iso, iso-electric). (Ill) Body Temperature. (IV) Use of sedative amélgesic drugs. EEG,
electroencephalogram

EEG in the beginning of the registration, and two patients showed a burst
suppression pattern. A typical example is shown in Figure 2.3. In all other

patients the EEG did not become continuous even after 72 hrs, for example
patient 13 in Figure 2.4.

Table 2.3 summarizes the relevant sensitivity, specificity and predictive valu
rates of the dferent EEG patterns and SSEP responses for predicting for pre-
dicting good (CPC score 1-2) and poor outcome (CPC 3-5) within 24 ters af
resuscitation.



Patient number 24

A) 11 hours after resuscitation B) 24 hours after resuscitation C) 64 hours after resuscitation

| Fp2-F8 e e A
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Temperature (C)

v Propofol H 200 I 200 [ 100 [ 40 | —mg/h
Fentanyl H 50 | 100 | pg/h
| | |
0 24 48 72 96

Time after resuscitation (h)

Figure 2.3: Trend in EEG of patient number 24 with poor neurological outcome (&ate
Performance Category score 5). In this patient the EEG is improvimg &rdurst suppression
to a continuous, but duse slowed pattern, however not within the first 24 hisor(n, nor-
mal, Slow; diffuse slowedEpilept, epileptiform discharge®urst burst suppressiohow, low
voltage,lso, iso-electric).

Presence of epileptiform activity

In eight patients (14%) the EEG was classified as seizure activity or gen-
eralized periodic discharges. In seven patients the discharges cahforue
several hours and despite treatment with anti-epileptic drugs in five of them
(phenytoin; in two cases levetiracetam was given additionally). All those
seven patients had poor neurological outcome. In five of those patients the
epileptiform discharges followed after a burst suppression pattertaghevo
patients showed a continuous pattern before the GPDs occurred. @emt pa
with generalized periodic discharges had a good outcome, in this patient the
discharges were self-limiting within 2 hrs and anti-epileptic drugs were not
given. This patient already showed a continuous pattern before theftae
generalized periodic discharges.



Patient number 13

A) 4 hours after resuscitation B) 14 hours after resuscitation C) 34 hours after resuscitation

\

Propofol — 140 —{mg/h
Fentanyl— 100 - Hg/h

I I I
0 24 48 72 96
Time after resuscitation (h)

Figure 2.4: Trend in EEG of patient number 13 with poor neurological outcome (@ale
Performance Category score 5). In this patient the EEG never ingbtovam EEG pattern better
than burst suppressionN¢rm normal,Slow diffuse slowedEpilept, epileptiform discharges,
Burst, burst suppressiotow, low voltage,lso, iso-electric).

In four additional patients (7%) the EEG showed a burst suppresstterpa

with the bursts consisting of sharp waves. In two patients, rhythmic move-
ments of the eyes and mouth were present during the bursts, indicating a
myoclonic status epilepticus. All these four patients had poor neurological
outcome, despite treatment with phenytoin.

Three other patients with continuousffdse slowed EEG patterns showed
minor epileptiform abnormalities. In one of them rhythmic activity of the
feet, shoulder and eyes was present. All these three patients redpwsalie
to treatment with anti-epileptic drug and had good neurological outcome.



Discussion

In this study we explored the value of continuous EEG monitoring for the early
prediction of neurological outcome in patients after cardiac arrest treatied
hypothermia. In our study population, 27 out of 56 patients (48%) obtained
good neurological outcome (CPC 1-2), which is within the 34%—-55% range
mentioned in other studiés’. The first 24 hrs of EEG after resuscitation were
the most useful in the prediction of, both good and poor neurologicabmec

Our SSEP findings are comparable to the work of Bouwes &tlaltheir study

of 77 patients, bilateral absence of the cortical N20 responses of meeliam
SSEP performed during mild hypothermia 24 hrs after resuscitation predicted
poor neurological outcome with a sensitivity of 27% and a specificity of L00%
However, in literature one patient treated with TH after cardiac arrest, with
bilateral absent N20 responses at day 3 and with good neurologicaine
(CPC 1) is describet Despite this single case, pooled analysis of recent SSEP
studies on hypothermia patieft$'%18gives a very low false positive rate of
1.29%2324

After 12 hrs, 44% of the patients with good neurological outcome showed
a continuous EEG pattern, while none of the patients with poor neurological
outcome showed continuous EEG patterns. The evolution from abséicator
activity to an intermittent pattern and finally to a continuous pattern in patients
with good neurological outcome was already described in 1984 by Jagen
and Malchow-Mgllef>=2’. They studied patients after cardiac arrest with no
detectable cortical activity in the initial EEG. These patients were not treated
with therapeutic hypothermia and were typically unsedated. In their study,
patients with good neurological outcome and absent EEG activity measured
directly after the cardiac arrest, showed a return of cortical activity witbin
mins to 8 hrs. In these patients the EEG activity could occur intermittently
for as long as 16 hrs; thereafter the activity became continuous in all fstien
with good neurological outconf. In contrast, patients with poor neurological
outcome showed slower or no recovery in their EEG patté&rffs

The sensitivity for predicting poor outcome of low voltage and iso-electric
EEG patterns 24 hrs after resuscitation was 40%, with a specificity of 100%.
This is significantly larger than the SSEP at 24 which had a sensitivity of 24%
and specificity of 100%. This fierence in sensitivity most likely results from
the larger vulnerability of cortical pyramidal cell synaptic function than the



thalamocortical (TC) synapses in ischemia: pyramidal cell synaptic function
is mainly reflected by the EEG, while SSEP mainly evaluates the TC synaptic
function?®,

A burst suppression pattern after 24 hrs was also associated with @aar-n
logical outcome, however not at a specificity of 100%: the sensitivity B&6 9
and the specificity was 96%. In some patients with poor neurological outcome
the burst suppression pattern improved to a continuous EEG pattern at a late
stage. This illustrates that the time scale of improvement of the EEG pattern is
a relevant factor in the prognosis. Furtheffelientiation of burst suppression
patterns may be relevant in predicting poor outcome, as laffereices in

the type of burst suppression patterns exist, including more specificrmtter
associated with a poor outcor¥e This was however not explored further in
this study.

Our findings support earlier studies in patients not treated with TH, which
report that the combined group of iso-electric, low voltage and burgiregp

sion EEG patterns is associated with poor neurological outédfheMore
recently, in a study of Rundgren et al., 95 cardiac arrest patients tredéted
therapeutic hypothermia were studied with continuous EEG as well. In their
study, a simplified 2 channel amplitude integrated EEG was used, which is
more easy to apply in the ICU and shortens the time of visual interprefatton
Their study used a similar cooling regimen, except that some patients were
cooled using intravenous instead of external cooling. Sedation levels with
propofol during hypothermia were also similar to our study. It was shoah th
an initial flat pattern had no prognostic value while a continuous EEG pattern
at the start of registration or at the beginning of normothermia was assbciate
with good neurological outconié. Our findings confirm these results. In
addition, we also studied the EEG evolution over time, showing that the EEG
patterns at 12 or at 24 hrs were more informative than the initial EEG and
the EEG at normothermia (see Figure 2.1). A recent study of Rossettt®t al.
also reported that “prolonged burst suppression” activity is assdciatid

poor neurological outcome in patients treated with hypothermia. However, a
detailed comparison between their and our findings figcdit, as not in all
cases itis clear at which moment after CA their EEGs were evaluated. in add
tion, different sedatives were used in their study compared to ours (midazolam
instead of propofol).



Epileptiform discharges or burst suppression patterns containing sleaes

or associated with epileptiform activity were present in 21% of the patients.
All those epileptiform discharges were associated with poor outcomepiexce
for one patient (with self-limiting epileptiform discharges). These findings a
similar to other studies, which also concluded that both generalized periodic
discharges and a status epilepticus are associated with poor outcomet but n
invariably s?-3¢ The background EEG pattern prior to the development of
the status epilepticus might have a prognostic value in these patiévitsor
epileptiform abnormalities on a continuous background EEG were prasent
three patients, those three patients responded to anti-epileptic drugsawnd re
ered well.

In our study, we tried to identify early predictors during the first 24 hisgis
ongoing EEG activity. Clinical scores, in particular the Glasgow coma score
were not used in this analysis, as these are highly unreliable during the firs
24 hrs as patients were sedated and treated with therapeutic hypothermia. Fu
thermore we did not include initial rhythm, cause of cardiac arrest, location
of cardiac arrest, comorbidities, or other scores such as the APACbiE sc

in the statistical modeling. It is well known that any of these factdiscss
neurological recovery as wélf’. However, in this study we primarily focused

on the predictive value of the EEG on its own, as the EEG directly reflects
cortical neuronal functiok/, known to be most sensitive to ischemic injuries.

Although all patients were treated with sedative drugs during the period of
hypothermia according to the same treatment protocfikrdinces in sedation
levels may have influenced the EEG patterns. However, no significant dif-
ference in sedation level between the group with good neurological metco
and poor neurological outcome was found (Table 2.1). We note hoythatrn
trend was found in the dosages of fentanyl and remifentanil betweendbpsy

of patients with poor and good neurological outcome, with both drugs given

a higher dose in patients with good neurological outcome. Furthermore, it is
unlikely that the most severe EEG patterns (iso-electric and low voltage) wer
caused by the use of propofol, fentanyl or remifentanil in the dosek asehe
EEG is not suppressed at these doses, and typically only shows malevate
ing38. Other institutions may havefeerent sedation regimens, which possibly
could dfect the EEG patterns. Therefore, it is presently unclear to what extent
our results to patients treated with higher doses fiedint sedatives can be
extrapolated.



A possible shortcoming of this study was that the treating physicians were not
completely blinded to the EEG and SSEP results. This may have led to “self-
fulfilling prophecies”. According to current treatment guidelines, treatmen
was stopped if the N20 response was bilaterally absent at day thrabetur
more, some patients died within the first week after cardiac arrest for other
reasons, for example due to a second cardiac arrest. We cannadesxcéu
complete neurological recovery could have occurred in these patiantheF
more, it should be noted that this was a single center study which may have had
an dfect on the visual analysis of the EEGs. Given however that the categorie
were defined in a very clear manner, it is unlikely that the interpretation of the
patterns were significantly biased. Another limitation might be that we only
used 5 min epochs of EEG data every hour, instead of the complete registratio
However, it is unlikely that this had a significant influence on our resuitses

the EEG patterns typically evolved over hours.

In closing, this study provides additional support for the relevancekss E
monitoring in the ICU in patients treated with TH. Clearly, future studies are
needed, preferably multi-center studies, to confirm these results andtentigh
the confidence intervals, in particular of the specificity. In addition, asavisu
analysis of EEG monitoring is time consuming and can only be done by ex-
perienced electroencephalographers, it will become crucial to usenatito
classification techniqué$ or to only extract the most important quantitative
EEG variableé’.

Conclusions

This prospective study show that EEG monitoring during the first 24 les af
resuscitation can contribute in the prediction of both good and poor neuro-
logical outcome. For successful recovery, the time scale during whi¢h EE
improves towards a continuous pattern has to occur within the order 0§24 hr
In our study, an iso-electric or low voltage EEG pattern 24 hrs after céatis
tion was associated with poor neurological outcome with a sensitivity that was
almost two times larger than bilateral absence of the N20 SSEP response.
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Abstract

Objective: To assess the incidence, prognostic significance, andifopchn
EEG characteristics of “burst-suppression with identical bursts” anbtusis
potential pathophysiological mechanisms.

Methods: Burst-suppression EEGs were identified from a cohort bfcbO
matose patients after cardiac arrest, and from our complete EEG datdbase o
9600 EEGs, since 2005. Patterns with and without identical bursts were cla
sified visually by two independent observers. Of patients after cardiasta
outcomes were assessed at three and six months. Identical and ntcaiden
burst-suppression patterns were compared for quantified EEG tdrdstcs,
including cross-correlation of burstshapes, and clinical outcome. tifatare
analysis of burstshape was applied to the first 500ms of each burst.

Results: Of 9701 EEGs, 240 showed burst-suppression, 22 with identica
bursts. Identical bursts were observed in twenty (20%) of 101 comatnse
tients after cardiac arrest between a median of 12 and 36 hours afterabe a
but not in the six patients with other pathology than cerebral ischemia, or the
183 with anesthesia induced burst suppression. Inter-obsenesragnt was

0.8 and disagreement always resulted from sampling error. Burstesgopn

with identical bursts was always bilateral synchronous, amplitudes vigdrerh
(128 vs. 25uV, p=0.0001) and correlation céicients of burstshapes were
higher (95%>0.75 vs. 0%6-0.75, p<0.0001) than in burst-suppression without
identical bursts. All twenty patients with identical bursts had a poor outcome
versus 10 (36%) without identical bursts.

Conclusion: “Burst-suppression with identical bursts” is a distinct paticé

EEG pattern, which in this series only occurred aftéfudie cerebral ischemia
and was invariably associated with poor outcome.

Significance: In comatose patients after cardiac arrest, “burst-ssgipnevith
identical bursts” predicts a poor outcome with a high specificity.



Introduction

Burst-suppression in the electroencephalogram (EEG) is charadtbsizegh
amplitude events (bursts) alternated by periods of low or absent actiuiy (s
pressionsy?. This pattern can be physiological, for instance during early
development, or pathological, for example in almost half of comatose patients
within the first 48 hours after cardiac arréstlso, burst-suppression can be
induced by anesthetités Under pathological conditions, it is usually associ-
ated with a poor prognosis. However, in a previous prospective tehaty,

we found that 18% of patients with burst-suppression at 12 or 24 hdtars a
cardiac arrest had a good functional outcéme

Characteristics to classify burst-suppression patterns into subgratipgre-
sumed diferences in clinical significance include the duration of the bursts
and interburst intervals, maximum peak to peak voltage, area under thes cur
and the ratio of power in high versus low frequenéieBor example, longer
suppressions were associated with poorer recovery in patients witmpgista
comé’. Still, predictive values for poor outcome remain too low to allow
treatment decisions.

Extreme similarity of burstshape is a distinct feature of some burst-suppress
patterns. Herewith, subsequent bursts in a particular channel aret §rhos
tographic” copies. Patterns with this particular characteristic have been sp
radically reported and considered a rafiy However, through standard use
of continuous EEG in comatose patients on the intensive care, we havedearn
that these occur relatively frequent within the first days after acufesdi
cerebral ischemia.

Here we report on the incidence and prognostic significance of “burst-
suppression with identical bursts” and quantify its EEG characteristics. We
show that this is a distinct pathological EEG pattern that only occurs after
diffuse cerebral ischemia and is invariably associated with a poor outcome in
these patients. Since both morphology and clinical significance apparently
differ from other burst-suppression patterns, we propose to label thenpasdte
“burst-suppression with identical bursts”. We discuss potential pattsigh
logical mechanisms.



Methods

Burst-suppression EEGs

We identified EEGs with bursts-suppression in two ways. First, we took these
from comatose patients after cardiac arrest that were included in agotosp
cohort study on the predictive value of continuous EEG on outcome betwee
June 1st 2010 and September 31st 2012. Design, eligibility criteria, and main
outcomes of the first 60 patients included in this study have been published
previously?. In brief, since June 1st 2010, consecutive adult comatose patients
after cardiac arrest, treated with hypothermia, were included within twelve
hours after the arrest to undergo continuous EEG monitoring on the iviensi
care unit. Monitoring continued until patients regained consciousnest atie

up to five days. For this study, the institutional review board waived thd nee
for informed consent.

Second, we identified burst-suppression EEGs from the Medisch 8pectr
Twente'’s, complete hospital database. Here, since January 2005.@H E
are systematically categorized. Hence, EEGs that meet the criteria for burs
suppression are labeled as such. We took all EEGs from patients agedrt8

or older, recorded between January 2005 and December 2012 aheldats
“burst-suppression”.

EEG recordings

For all recordings, electrodes were applied according to the internhfibra

20 system, using 19 channels. Electrode impedances were kept bel@w 5 k
Sampling frequency was set to 256 Hz. A Neurocenter EEG system (Clinica
Science Systems, the Netherlands) was used with a TMS-i full band EEG
amplifier (TMS international, the Netherlands) or a BrainLab EEG recording
system (OSG BVBA, Belgium) was used. Data were stored to diskifdimz
analysis.

Visual analysis of burst-suppression patterns

Burst-suppression was defined as any pattern with high amplitude events
(>20 nV) alternated with periods of low<10 uV) or absent EEG activity

of at least one second. After visual identification of burst-suppregsat-
terns, these were visually sub-classified into patterns with identical bundts a
patterns without identical bursts. Bursts were considered identical, ifrite fi
500 ms were identical, irrespective of amplitude or subsequent duration of
bursts or inter-burst intervals.



Of comatose patients after cardiac arrest, this visual analysis was dase ind
pendently by two investigators (MT-C, MvP) in automatically selected epochs
of five minutes at 12 and 24 hours after cardiac arrest. These invessigatme
blinded for the patients’ clinical condition during the registration, the record
ing time of the epoch, and the patient’s outcome. In case of disagreement,
the final classification was decided by consensus in consultation with a third
observer (JH), who had access to the complete recordings, but wdsdfior

the patients’ outcome. All EEG analyses were done after the registratidns an
EEG played no role in initial treatment decisions. All other burst-suppnessio
EEGs from the hospital data base were reviewed by a single observeY) (M
blinded for the underlying condition and the patient’s outcome.

Quantitative analysis of burst-suppression patterns

Quantitative analysis of correlation between shapes of subsequsts, iwrst
amplitudes, and durations of the interburst intervals was done for EBGs fr
comatose patients after cardiac arrest. For this purpose, the initiation of 50
subsequent bursts was annotated manually in a particular bipolar channel
each EEG. This was typically done at twelve or 24 hours after the arrese-C
lations between the burstshapes (truncated to a duratior-@PVisamples i.e.

500 ms) were calculated using the cross-correlation over a range dfriegs
—maxlag to maxlag, with maxlagM—1). Subsequently, the maximum value
of the 2*maxlag-1 values was determined. This resulted in 122edént
correlations for each patient, from which the mean correlatiofffictent per
patient was determined. In addition, the mean and maximum amplitude of
the first 500 ms of the 50 bursts were calculated. Inter-burst intervais we
defined by the time dierence between the initiation of bursts. All routines
were implemented in Matlab.

Treatment

Comatose patients after cardiac arrest were treated according totGienen
dard therapy, as described previouslyin short, hypothermia of 3& was
induced as soon as possible after the arrest and maintained for 24kyours
intravenously administered cold saline and cooling pads. Propofol vk us
for sedation to a level of4 or -5 at the Richmond Agitation Sedation Scale
and discontinued after normothermia had been reached, if possible nflenta
or Remifentanil was used against shivering. Of patients other than those in
cluded in the prospective cohort study, medication during the registraisn w
not prospectively collected.



Outcome assessment

Of comatose patients after cardiac arrest, that had been included in@ur pr
spective cohort study, outcome assessment was done at three anchiiits mo
by telephone (MT-C). The primary outcome measure was the best score on
the Cerebral Performance Category (CPC) within six months dichotomized
between “good” (CPC 1 or 2) and “poor” (CPC 3, 4, or 5). Secopdatcome
measures included mortalty Of patients other than those included in the
prospective cohort study, outcome was not prospectively assessed

Statistical analysis

From all patients with burst-suppression EEGs, the proportions of burst-
suppression patterns with and without identical bursts were calculateddbr
underlying condition. All further analyses were done for the subgrofup
patients that had been included in our cohort study on the diagnostic alue o
continuous EEG in comatose patients after cardiac arrest. Inter-obagree-
ment for the appointment of “identical bursts” between the two independent
observers was analyzed with Cohen’s Kappa. Identical burst-ssgipn pat-
terns were compared with other burst-suppression patterns with regdina-to
ical outcome and quantitative EEG characteristics (bilateral synchromli-a
tude, duration of inter-burst intervals, and correlation of burstshapeda are
presented as proportions, or mearstandard deviations (SD). Between-group
differences were analyzed with Fisher’s exact or Studete'st, if appropriate.

For burst-suppression with or without identical bursts, sensitivity, iBpigg
positive predictive value (PPV), and negative predictive value (Nfé¥/jhe
prediction of poor outcome were calculated, including corresponding 95%
confidence intervals (CIs).

Results

Incidence of burst-suppression with identical bursts

From our cohort of 101 comatose patients after cardiac arrest, 48) ([d&8o
burst-suppression patterns at twelve or 24 hours. Twenty (20%) tnesd- b
suppression with identical bursts on visual analysis. Of all other 96@BsEE

in our database, 192 showed burst-suppression. Underlying corsditioied.

Two had difuse cerebral ischemia from other causes than cardiac arrest, both
with identical bursts. Burst-suppression with identical bursts was notisee
the six patients with other pathology than cerebral ischemia, or in the 183
patients under anesthesia (Table 3.1). Three examples of burstssippre
without identical bursts are shown in Figure 3.1, and three examples stf bur
suppression with identical bursts in Figure 3.2.



Table 3.1: Causes of burst-suppression patterns with and without identical bursts.

Cause of burst-suppression Identical bursts
Yes No
Cerebral ischemia
Coma after cardiac arrest 20 28
Drowning 1
Hanging 1
Cerebral infarction 1

Other causes

Traumatic brain injury 3
Therapeutic hypothermia 1
Propofol or sevoflurane anesthesia 183
Meningitis 1
Craniotomy 1
Total 22 218

Timing of burst-suppression with identical bursts

Baseline characteristics of comatose patients after cardiac arrest wih bur
suppression are summarized in Table 3.2. In these patients, burstssippre
with identical bursts was observed between a median of 12 (range 3r@3) a
36 (range 15-53) hours after the arrest. These patterns were fdllpnmirst-
suppression without identical bursts in twelve patients (60%, subsequently
low voltage in four), generalized periodic discharges in four (20%i)eptic
discharges in one (5%), and low voltage in one (5%). In two patientst-burs
suppression with identical burst was present up to death. Burstesgign
without identical bursts disappeared more gradually after approximately me-
dian 32 (range 17-72) hours after cardiac arrest. This pattern Wes/dd

by continuous slowing in 22 patients (79%, subsequently generalizedimerio
discharges in seven), generalized periodic discharges is three,(athélow
voltage in one (4%). In one patient, burst-suppression without identicat b
was present up to death.

Inter-observer agreement

Cohen’s Kappa for inter-observer agreement of identical vs. nentichl
bursts was 0.8. Disagreement always resulted from selection of thevetise
epoch: either the inter-burst interval was longer than five minutes, sbuhsts
fell outside the epoch, or bursts were only partly represented within thehep
Consensus was always readily reached by looking outside the epoch.
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Figure 3.1: Left panels: illustration of EEGs of three comatose patients after candizst §A-

C) showing “common” burst-suppression, without identical burstgesélpatients were sedated
with propofol 1 to 2.5 mgkg/h. The individual EEG epochs have a duration 5 s. The mean
interburst interval is 5.0 s (A), 9.8 s (B), or 11.8 s (C). Vertical:bh00 uV. Filter settings
0.5-25 Hz. Right panels: histograms of correlationfiioents of burst-shape (r): in all three
patients ¥0.75.
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Figure 3.2: Left panels: illustration of EEGs of three comatose patients after cardiasta
(A-C) showing “burst-suppression with identical bursts”. A: recogdirom an eighty years
old patient sedated with propofol 1 to 2.5 fkg/h; inter-burst interval 1% 9 s. B: 80 years
old patient sedated with propofol 1 to 2.5 fkg/h; inter-burst interval 65 64 s. C: 68 years
old patient without sedative medication at normothermia. inter-burstvaité0 + 23 s. The
correlation extends over more than three seconds. The individualdpBéhs have a duration
of 5.0 s. Vertical bar: 10QV. Filter settings 0.5-25 Hz. Right panels: histograms of correlation
codficients of burst-shape (r): in all three patient9185.



Table 3.2: Baseline characteristics of comatose patients after cardiac arrest wit bu
suppression EEG with and without identical bursts.

Identical bursts

Yes (n=20) No (n=28) p value

Age (years) 67 65 0.8
OHCA 17 (85%) 25 (89%) 0.7
Presumed cause of cardiac arrest 0.1

Cardiac 10 (50%) 20 (71%)

Other 6 (30%) 2 (7%)

Unknown 4 (20%) 6 (22%)
Initial rhythm 0.02

VF 8 (40%) 21(75%)

Asystole 8 (40%) 2 (7%)

Bradicardia 3 (15%) 2 (7%)

Unknown 1 (5%) 3 (11%)
Propofol treatment 19 (95%) 28 (100%) 0.4
Propofol dosage (nigg/h) 25+1.2 3.2+12 0.05
Midazolam treatment 2 (10%) 6 (21%) 0.4
Midazolam dosagauykg/h) 41+12.6 11.9+ 26.4 0.2
Fentanyl treatment 10 (50%) 24 (86%) 0.01
Fentanyl dosageuykg/h) 09+1.2 1.4+ 0.8 0.06
Remifentanil treatment 10 (50%) 5 (18%) 0.03
Remifentanil dosagaufykg/h) 3.9+ 22 5.2+ 3.9 0.4

OHCA indicates out of hospital cardiac arrest; VF, ventricular fibrillatidosage, maximum
dosage within the first 24 hours.

Quantitative analysis

Quantitative EEG characteristics of comatose patients after cardiacwaittest
burst-suppression with and without identical bursts are illustrated in Fig-
ures 3.1 and 3.2 and summarized in Table 3.3. Burst-suppression with identi-
cal bursts was more often bilateral synchronous than burst-sujpresish-

out identical bursts, amplitudes were higher, and correlatiofficmnts of
burstshapes were higher. The only patient with identical bursts acgotalin
visual analysis, who still had a correlation @@@ent lower than 0.75, had
identical bursts of very short duratiorZ00 ms). In this patient, the time
interval in which correlation was determined (500 ms) was probably too long
to adequately measure correlation €méents between the bursts. Although
guantitative analysis was restricted to the first 500 ms, visual analyseeve
identical burstshapes extending beyond 500ms, in bursts with duratiayer lon
than 500ms. In burst-suppression with identical bursts, the interburstaige
were invariably flat and all transitions between bursts and interburst<aiser
were abrupt.



Table 3.3: Characteristics of (patients with) burst-suppression with and without idéntic
bursts.

Identical bursts on visual analysis

Yes (n=20) No (n=28) p value

Mortality 20 (100%) 10 (36%)  <0.0001
Bilateral synchrony 20 (100%) 18 (64%) 0.03
Mean amplitudeyV) 26.4+ 16.0 6.5+ 3.8 <0.0001
Maximal amplitude (V) 127.8+104.5 24.9+ 14.2 0.0001
Mean inter-burst intervals (s) 5858 76+ 339 0.8

Mean correlation cdécient of burstshape 0.860.08 0.49+ 0.08 <0.0001
Correlation co#ficient of burstshape 0.75 19 0 <0.0001

In number (%) of patients or meanstandard deviation. Amplitude indicates amplitude in the
first 500 ms of the burst.

Table 3.4: Sensitivity, specificity, and predictive values of burst-suppression avithithout
identical bursts within 48 hours after cardiac arrest for prediction of patcome.

Sensitivity  Specificity PPV NPV
(95% ClI) (95% ClI) (95% CI) (95% ClI)
Burst-suppression with 40% 100% 100% 63%
identical bursts (27%-55%) (91%-100%) (80%—100%) (51%—73%)
Burst-suppression without 20% 65% 36% 45%
identical bursts (11%—-34%) (50%—77%) (20%-56%) (34%-57%)

Burst-suppression with or without identical bursts has been identifiecallysu95% CI
indicates 95% confidence interval; PPV, positive predictive value; Niegative predictive
value.

Outcome

All twenty patients with identical bursts (100%) had a poor outcome vs. ten
(36%) without identical bursts. Patients with a poor outcome never regained
consciousness and all died. Sensitivity, specificity, PPV, and NPV ist-bu
suppression with and without identical bursts based on visual analysis fo
prediction of poor outcome are given in Table 3.4.

Discussion

We report on a distinct EEG burst-suppression pattern, which we peojoo
label “burst-suppression with identical bursts”. This pattern was ptdse
twenty percent of our patients aftefitise cerebral ischemia, but was not seen
in the six patients with other pathology than cerebral ischemia, or in the 183
patients under anesthesia. In burst-suppression with identical buusss; b
shapes are highly similar and bilateral synchronous. Inter-burst aitcave
variable in duration and invariably flat. Inter-observer agreement oitiickd

vs. non-identical bursts was higk=0.8), and disagreement always resulted



from sampling error. All patients with burst-suppression with identicaltsurs
but not all patients with other burst-suppression patterns, died. Thisabedic
that burst-suppression with identical bursts represents irreversitliensc
network damage of the brain predicting poor outcome with a specificity and
PPV of 100%.

Burst-suppression patterns are characterized by oscillations with two time
scales: afast time scale for the intra-burst oscillations and a slow time scale fo
the periods between the burdts The burst initiation and termination are the
result of bifurcations in the system: a bifurcation of an equilibrium attractor,
resulting in a transition from resting to bursting, followed by a bifurcatiomfro

a limit cycle attractor back to the resting stafe During the bursting, with fast
time-scale activity, there must also be a relatively slow process makingmgeuro
inexcitablé.

In most situations, these two time scales result from processes involving fas
and slow ion currents. An example is the slow activation of th& @epen-

dent K" after-hyperpolarizing current (IAHP). This current is activated iy
bursting (fast time scale), as the intracellulafCeoncentration increases, and
eventually results in ending of the burst. Hereafter, the intracelluldr Ga
slowly removed and bursting may start again, as the outwardufrent deac-
tivates. Other scenarios include a calcium mediated inactivation of an inward
current and voltage gated inactivation of inward, or activation of owtwar-
rents. These and other mechanisms are discussed in more detail in 1Zmnikevic
et al?. Although such processes may result in identical burst morphology in
single neurons, it is not straightforward how identical bursts arise a{thtal
scale of an EEG.

Ching et al. proposed unifying mechanisms for all burst suppressiterps:

an imbalance of neural activity and available enéfgyHowever, both our ob-
served burst phenomenology and the assumed pathophysiology ofyimgle
conditions argue against the same mechanism for burst-suppressiangatte
from different causes. With regard to burst phenomenology, Ching’s simu-
lations generated variable bursts with equal (physiological) spectratmon
as in baseline EEG, with preservation of dominant power inattieequency
band. Otherwise, the spectral contents of our EEGs with “burst ssgipre
with identical bursts” consist of frequencies ranging from shto 8 band,
without a clear dominant frequency. Therefore, their claim that their node



is consistent with descriptions of burst-suppression in ischemic brain iigury
not substantiated by our findings.

With regard to pathophysiology, the initial event in cerebral ischemia is
synaptic failuré?2 where excitatory synapses are more vulnerable than in-
hibitory'3. As energy levels further decrease, )N&" pumps will fail and
neurons will depolariz&-18. In contrast, during medication induced burst-
suppression, neurons have been shown to hyperpofasiggch has been as-
cribed to depression of glutamate mediated excitatory post-synaptic cdfrents
Furthermore, identical bursts in burst suppression typically occumedt@
two days after the cardiac arrest, and continued during hours up to Sisge
blood flow has been restored at this time, an absolute lack of energy islunlike

Burst-suppression with identical bursts suggests a deterministic protess o
burst generation, whereas other burst-suppression patterns daihemd on
stochastic processes. In a previous report, we have shown thds-burs
suppression with identical bursts represents a low dimensionaf statga-
tients after difuse cerebral ischemia, selective synaptic failure is a candidate
mechanism for this condition, since during cerebral ischemia synaptitidanc
fails before the occurrence of membrane depolarizafiofthis may result in
deterministic network behavior of the brain, especially since gap junctiens ar
expected to be presernvEd Synaptic disturbances are presumably irreversible
after relatively severe ischemia, which may explain the high case fatalityfrate o
patients with burst-suppression with identical but5tZ. Imaging techniques,
such as MRI, may not detect such irreversible network damage, apt&yna
changes need not to be accompanied by cell swétlitgy which is supported

by the finding that approximately 20% of patients with a poor neurological
outcome after diuse cerebral ischemia had no abnormalities on early MRl

Burst-suppression has been associated with poor neurological outéune
vivors of cardiac arrest before. However, in previous studieg]iptive values
were much lower than 10036°%-22 |n these studies, patterns were probably
heterogeneous, including burst-suppression with and without identicstish
supporting the notion of identical bursts being a distinct characteristic. Fur
thermore, the current study confirms our previous results with regard tatimin
specific EEG changes only have a high predictive value if measureda$eon
cardiac arrest After a median of 36 hours, burst-suppression with identical
bursts evolves into less specific pathological patterns.



Differences in baseline characteristics of patients with and without identical
bursts include the initial rhythm before resuscitation, propofol dosaayes
proportions of patients treated with fentanyl or remifentanil. Ventriculailfibr
lation occurred more often in patients with identical bursts. This is inconsistent
with our finding of poorer outcome in patients with as compared with those
without identical bursts, since ventricular fibrillation is associated with a better
outcome after resuscitation as compared with asystole or brady€ardiae
lower dosages of propofol and the smaller proportions of patients tredied
fentanyl or remifentanil in patients with as compared to those without identical
bursts probably reflects more severe ischemic cerebral damage, in hassich
sedative medication was needed during ventilation and hypothermia.

Our study has certain limitations. First, some comatose patients after cardiac
arrest did not die as a result of cerebral damage, but from otherlicatipns.

It cannot be excluded that neurological recovery would have oedun these
patients. Second, it was a single center study, which may have influeregd tr
ment decisions or EEG analysis. Third, most recordings of burst-eggion

with identical bursts after cardiac arrest were during treatment with fiwbpo
However, the observed identical burst-suppression patterns charsilely
caused by this drug. Propofol induced EEG changes are well knowthe
relatively low dosages that were used in our patients, the EEG remains con-
tinuous, with anteriorization of the “alpha” rhytrth If burst-suppression is
induced by propofol, bursts are heterogeneous and appear apgehsarad-
ually?>26 whereas our identical burst-suppression patterns were all characte
ized by abrupt transitions between bursts and suppressions. Marseveral

of our patients with burst-suppression with identical bursts were not nigdica
sedated and two previously reported patients were neither treated with any
sedative medicatioh Fourth, data on EEG reactivity, brainstem reflexes, and
clinically overt myoclonia were not collected prospectively, and retrosgee
collection appeared unreliable. Therefore this information is lacking.

Conclusion

Burst-suppression with identical bursts is a distinct pathological EEG patter
that in our series only occurred aftefffdise cerebral ischemia. In comatose
patients after cardiac arrest it was invariably associated with poor outcome
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Abstract

Objective: To assess the value of continuous EEG for prediction of mgcd
comatose patients after cardiac arrest treated with mild therapeutic hypother-
mia (MTH).

Methods: In a prospective cohort study, we included subsequéahtsawith
postanoxic encephalopathy after cardiac arrest, all treated with MTHEIrGo
uous EEG was recorded during the first five days of ICU admission.aVisu
classification of EEG patterns was performed in 5 minute epochs at 12 and
24 hours after cardiac arrest by two observers independently, tliicdgoa-
tients’ conditions and outcomes. Patterns were classified as iso-electric, low
voltage, epileptiform, burst-suppressionffdsely slowed, or normal. Burst-
suppression was subdivided into patterns with and without identical bursts
Primary outcome measure was the neurological outcome based on each pa-
tient's best achieved Cerebral Performance Category (CPC) sdtrm \&
months after inclusion.

Results:One-hundred-forty-eight patients were included, 68 (46%jdvar-

able outcome (CPC 1-2). In patients with favorable outcome, EEG patterns
improved within 24 hours after cardiac arrest, mostly towardsisiely slowed

or normal. At 24 hours after cardiac arrest, the combined group oflésxirie,

low voltage, and “burst-suppression with identical bursts” was invariasdp-
ciated with poor outcome (sensitivity 48%, specificity 100%, positive predic-
tive value (PPV) 100%, negative predictive value (NPV) 66%). At dQrk,
normal or difusely slowed EEG patterns were strongly associated with good
outcome (sensitivity 56%, specificity 96%, PPV 93%, NPV 67%). Conclu-
sions: EEG monitoring allows reliable prediction of both good and poor neu-
rological outcome of postanoxic encephalopathy in patients treated with MTH
within 24 hours after cardiac arrest.



Introduction

More than half of all comatose patients who havffened from cardiac arrest
never recover of unconsciousness as a result of postanoxictexiopathy-2.

Early and reliable prediction of outcome in these patients may be helpful in
clinical decision making and preventing continuation of unsuitable medical
treatment. Predictive values of clinical measures and biochemical markers
have become uncertain since the widespread introduction of mild therapeu-
tic hypothermia (MTH$-8. A bilateral absent cortical somatosensory evoked
potential (SSEP) is considered to be the most reliable predictor of poor out-
come>10 However, its sensitivity is low, and neurological outcome remains
uncertain in patients with preserved cortical SSEP responses.

The electroencephalogram (EEG) depicts a direct measurement abspon
neous brain activity. Previous studies have shown that EEG monitoring may
be helpful in predicting early outcome in patients after cardiac arrest, dreate
with MTH #1113 We recently demonstrated that iso-electric and low-voltage
EEG patterns at 24 hours after cardiac arrest were invariably as=teiih
poor outcome, while normal or fliusely slowed patterns at 12 hours always
predicted favorable outcom& In addition, we recently discovered a distinct
type of burst-suppression EEG, characterized by similar shapes sdcuént
bursts. We labeled this pattern as “burst-suppression with identical bansts
found that this pattern exclusively occurred in patients witffiude cerebral
ischemia and is invariably associated with poor outctfime

To confirm and extend the predictive value of EEG monitoring for bothrfavo
able and unfavorable neurological outcome of cardiac arrest patiezrdted
with MTH, we conducted a prospective multicenter cohort study.

Materials and Methods

Design

This prospective cohort study was conducted in intensive care u@itsjlof

two large teaching hospitals in the Netherlands. In the Medisch Spectrum
Twente (Enschede), patients were included from June 2010 to AprB.201
In the Rijnstate Hospital (Arnhem), patients were included from June 2012
to April 2013. The Medical Ethical Committee Twente waived the need for
informed consent for EEG monitoring during ICU stay, as well as for follow
up by telephone consultation. A part of the results from the first 56 patients
included between June 2010 and July 2011, was reported previdusly



Patients

Cardiac arrest patients with restoration of circulation and need for miahan
ventilation were admitted to the ICU for further treatment. Those who were
comatose (Glasgow Coma Scal8) at presentation in the emergency room
and subsequently treated with MTH, were eligible for inclusion. Exclusion
criteria were other neurological injuries, such as stroke or traumatic brain
jury, or any known history of neurological disorder.

Treatment protocol

All patients were treated according to standard protocols for comatosatgatie
after cardiac arrest. MTH, targeted af83was induced as soon as possible af-
ter arrival in the ICU and was maintained for 24 hours. Induction of MTasw
performed by administering of 2 liters of cold saline intravenously and the use
of cooling pads (Arctic Sun, Temperature management system, Medivance
Louisville CO, USA) or a cooling matrass (Blanketrol Il, Cincinnati SubveZe
Medical Division, USA). Thereafter, patients were rewarmed to nornnotize
with a controlled speed of 0.26 or 0.5C per hour. In Medisch Spectrum
Twente, propofol and fentanyémifentanil were used for sedation, and in most
cases discontinued when body temperature had reachetC36rbRijnstate
Hospital, patients received a combination of propofol, midazolanypanabor-
phine. In both hospitals, a non-depolarizing muscle relaxant (rocuroniu
atracurium) was added in case of severe compensatory shivering.

EEG recordings

In all patients, continuous EEG was recorded, starting as soon as Ipossib
after patient’s arrival in the ICU and was continued for at least 3 days,
until discharge from the ICU. Twenty-one silver-silverchloride cup tetetes
were placed on the scalp according to the international 10-20 systenrdReco
ings were made using a Neurocenter EEG recording system (Clinicalcgcien
Systems, The Netherlands) or a Nihon Kohden system (VCM Medical, the
Netherlands). EEG data during MTH played no role in actual prediction of
outcome or treatment decisions. However, treating physicians were nidé¢tlin
for the EEG and treatment of epileptiform discharges was allowed and left to
the discretion of the treating physician.

All EEG analyses were performed after the registrations. Epochs of S&sinu
were automatically selected by a dedicated computer algotttan12 and



24 hours after the estimated time of cardiac arrest. These time intervals were
chosen based on the results of our previous sttidfpochs were visually
scored by two reviewers (MT-C and MvP) independently. Visual aimlys

the epochs was done in random order, blinded to the point in time of the epoch
the patient’s clinical status during the recording, and outcome. EEG epochs
were classified as isoelectric, low-voltage2Q uV), epileptiform (including
evolving seizures and generalized periodic discharges), burstesgopn, dif-
fusely slowed, or normal. [Euse slowing was defined as a continuous EEG
pattern with a dominant frequeney8 Hz'2. Normal EEG was defined as

a continuous EEG pattern with a dominant frequen8yHz. Reactivity and
anterior-posterior dierentiation were not included in the definition of a normal
EEG pattern. Burst-suppression was defined by the presence of anclease

in amplitude (bursts), followed by interburst intervals of at least onerskco
with low-voltage or absent activity (suppressioaspuV)). Burst-suppression
patterns were subdivided into patterns with and without identical bdrsts
“Burst-suppression with identical bursts” is defined as burst-supjmesn
which shapes of subsequent bursts are similar. The reviewer was @ltowe
skip the epoch if, mainly due to artifacts, no clear classification was possible.

Outcome

Primary outcome measure was neurological outcome expressed as the best
score within 6 months after cardiac arrest on the five-point Glasgow-iigisb
Cerebral Performance Category (CPE) Outcome was dichotomized be-
tween “good” and “poor”. Good outcome was defined as a CPC scote of

or 2 (none or moderate neurological disability), and poor outcome as a CPC
score of 3, 4, or 5 (severe disability, comatose, or death). CPC somres
determined at 3 and 6 months after cardiac arrest by a single investigator
(MT-C) based on consultation by telephone. Neurological examination was
performed daily during the ICU stay.

Statistical analysis

Patient characteristics and drug intake are presented in a descripyivBifra
ferences between groups of patients with good and poor neurologital o
come were compared. Categorical variables were analyzed usingp®sars
chi-square (if no subgroup had an expected catbjtor Fisher’s exact test.
Statistical analysis of éfierences between groups of continuous variables was
performed using an independésest, after confirmation of a normal distribu-
tion of these values.



Sensitivity, specificity, positive predictive value (PPV) and negatiegligtive
value (NPV) of (groups of) specific EEG patterns for prediction ofdyoo
poor outcome after 12 or 24 hours after cardiac arrest were calcuiladhat-
ing the corresponding 95% confidence intervals (Cl).

Results

One-hundred-fifty-four patients were included and continuous EEGtaren

ing was started at a mean of 10.6 (SD: 10.1) hours after cardiac ariigst. S
patients were excluded in a later stage. Two patients were excluded becaus
of intracerebral hemorrhage, one because of discontinuation of MEH &
hours, one because of technical problems of the EEG registration and two
because they died within 12 hours, before any epochs for analysid beu
selected. Of the remaining 148 patients, none were lost to follow-up. lddndr
and-fourteen were included in Medisch Spectrum Twente, and 34 in Rijn-
state Hospital. Sixty-eight patients (46%) had good neurological outcome. A
flowchart is shown in Figure 4.1, patient characteristics and the use atise

or analgesic drugs are given in Table 4.1. EEG analysis could be pexdior

in 98 patients at 12 hours, and in 129 patients at 24 hours after cardist. ar
Analysis of other EEG epochs was not possible, because of artifantsause
EEG registration started after 12 hours after cardiac arrest.

EEG patterns in poor outcome

Of patients with poor neurological outcome, EEGs at 12 hours after caadia
rest, showed iso-electric £10, 21%), low voltage (®13, 27%), or burst sup-
pression patterns with €11, 23%) or without (810, 21%) identical bursts.
Two patients (4%) with poor outcome had epileptiform discharges at 1Zhour
after cardiac arrest, and two other (4%) had a continuouisaily slowed
EEG. At 24 hours after cardiac arrest, the EEG of patients with poootogsr

ical outcome had not improved in a substantial proportion: iso-electg4,(n
6%), low voltage (g9, 14%), or burst suppression pattern witk-{8, 28%)

or without (n=18, 28%) identical bursts. Four patients with poor neurological
outcome (6%) had epileptiform discharges at 24 hours. Eleven patiaidts (1
with poor neurological outcome showed a continuoufudely slowed EEG
pattern at 24 hours after cardiac arrest. At later time points, more patients
(41%) with a poor outcome, showed a continuous EEG pattern.



EEG registrations started:
154 patients

Included in analysis: Excluded from analysis:

148 patients 6 patients

* Intracerebral hemorrhage (2)?

Discontinuation of MTH after
5h(1)P
Technical problems (1)°
Death within 12 h after
cardiac arrest (2)

Good Outcome (CPC 1-2): Poor Qutcome (CPC 3-5):
68 patients 80 patients

Figure 4.1: Flowchart of patients through this study.

a Both patients had poor outcome, one of them had a burst-suppress®miEk identical
bursts both after 12 and after 24 hours after cardiac arrest, fronthbematient no artifact free
EEG data was available at 12 and 24 hours.

b This patient had poor neurological outcome, the EEG showed epileptid@rharges at 24
hours after cardiac arrest.

¢ This patient had good neurological outcome and showedrasély slowed EEG pattern at
both 12 and 24 hours after cardiac arrest. The patient was excludaddeethe raw EEG data
was not saved, and visual analysis of the EEG was done unblinded.

EEG patterns in good outcome

Patients with good neurological outcome had burst suppression pattighas w
outidentical bursts |®19, 38%), difusely slowed (818, 36%) or normal EEG
patterns (810, 20%) at 12 hours after cardiac arrest. Three patients (6%) with
good neurological outcome had a low voltage pattern at 12 hours aftBacar
arrest. At 24 hours after cardiac arrest, the EEG of 56 (86%) patidtiisaw
good neurological outcome had improved towards a continuous patterer, eith
diffusely slowed (840, 62%) or normal (816, 25%). Only nine patients
(14%) with good neurological outcome still showed a burst suppresaiterp
without identical bursts. Those nine patients showed improvement towards a
continuous EEG pattern in a later stage.

An overview of the EEG patterns at 12 and 24 hours after cardiactanres
patients with poor and good neurological outcome is given in Figure 4.2. Fig-
ure 4.3 represents illustrations of a burst-suppression pattern withduwtidn
identical bursts.



Table 4.1: Baseline characteristics of patients with good and poor neurologicalraatco

Poor neurological Good neurological p-value
outcome (CPC 3-5) outcome (CPC 1-2)

Number of patients 80 68 -
Number of male 58 (73%) 47 (69%) 0.65
Age (years) 67 (std 12) 61 (std 12) 0.005
(range: 27 to 82) (range: 34 to 93)
Number of OHCA 67 (84%) 64 (94%) 0.05
Initial Rhythm <0.001
VF 39 (49%) 61 (90%)
Asystole 27 (34%) 0 (0%)
Bradycardia 6 (8%) 0 (0%)
Unknown 8 (10%) 7 (10%)
Presumed cause of CA 0.03
Cardiac 53 (66%) 55 (81%)
Other origin 15 (19%) 3 (4%)
Unknown 12 (15%) 10 (15%)
Patients sedated with propofol 75 (94%) 66 (99%) 0.22
Propofol dose (myxg/h) 2.6 (std1.1) 3.0 (std 1.0) 0.01
(range: 0.2t0 6.2) (range: 0.2t0 5.4)
Patients sedated with midazolam 32 (40%) 19 (28%) 0.14
Midazolam dose (mgg/h)* 0.29 (std 0.25) 0.25 (std 0.22) 0.53
(range: 0.03t0 0.77) (range: 0.03 to 0.67)
Patients treated with fentanyl 37 (46%) 36 (53%) 0.41
Fentanyl doseug/kg/h) 1.7 (std 0.9) 1.9 (std 0.6) 0.20
(range: 0.6t0 4.7) (range: 0.7 t0 2.7)
Patients treated with remifentanil 24 (30%) 19 (28%) 0.78
Remifentanil doseug/kg/h) 4.6 (std 2.9) 7.4 (std 4.4) 0.02
(range: 1.1to 13.3) (range: 2.5t0 14.7)
Patients treated with morphine 19 (24%) 13 (19%) 0.52
Morphine dose (mfxg/h)* 0.34 (std 0.14) 0.28 (std 0.10) 0.22

(range: 0.20 to 0.65) (range: 0.16 to 0.58)
(CPC=cerebral performance category, OHEdut-of-hospital cardiac arrest, Wventricular
fibrillation, CA=cardiac arrest.) * Data of the dose levels of propofol, midazolam, and
morphine was missing in two patients.

Predicting neurological outcome

At 24 hours after cardiac arrest, 48% of patients with poor neurologiaal
come showed iso-electric, low voltage, or burst-suppression with identical
bursts EEG patterns, against none of the patients with a good neurological
outcome. At 12 hours, 56% of the patients with good neurological outcome
showed a normal or ffusely slowed EEG pattern, against two patients (4%)
with poor neurological outcome. These latter two patients died from non-
neurological causes (cardiac shock and a second cardiac amést} Ineu-
rological examination was possible. Sensitivity, specificity, PPV, and NPV
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Figure 4.2: EEG patterns at 12 and 24 hours after cardiac arrest for patients with
good and poor neurological outcome. In all patients with iso-electric HB®,voltage
EEG, or burst-suppression patterns with identical bursts after 24 houtsome was poor.
(CPC=Cerebral performance category, BS non identibarst-suppression without identical
burst, BS identicatburst-suppression with identical bursts.)

of (groups of) EEG patterns for the prediction of good or poor negiotd
outcome are displayed in Table 4.2.

Epileptiform activity

At 12 hours after cardiac arrest, the EEGs of two patients showed epleptif
activity (evolving seizures). Both still showed this activity at 24 hoursoTw
additional patients had epileptiform discharges at 24 hours after candtest.

In one of them, this activity consisted of evolving seizures, and in the other
of generalized periodic discharges. All four patients had poor negiczb
outcome, despite treatment with anti-epileptic drugs in three of them.
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Figure 4.3: lllustrations of burst-suppression patterns without (A) and with (B) idahtic
bursts. These EEGs were recorded in two patients with postanoxic exlepathy 24 hours
after cardiac arrest, treated with mild therapeutic hypothermigQBJilter settings were 0.5-
35 Hz. A) This patient received propofol (4.3 flkg/h), and had a good neurological outcome
(CPC=1). B) This patient received propofol (2.7 fkg/h), and had a poor neurological outcome
(CPG=5).



Table 4.2: Sensitivity, specificity, and predictive values for early prediction ofrokagical
outcome using EEG.

Time after
resusci- Sens Spec PPV NPV
tation (h) Predicting (95% Cl) (95% Cl) (95% CI) (95% CI)
EEG difuse 12 Good 56 96 93 68
slowed or Outcome (41-70) (86-100) (78-99) (55-78)
normal
EEG iso-electric, 24 Poor 48 100 100 66
low-voltage or Outcome (35-61) (94-100) (89-100) (56-76)
burst-suppression
with identical
bursts

(Senssensitivity, Speespecificity, PP\£positive predicting value, NP¥hegative predictive
value, CEconfidence interval.)

Discussion

In this prospective cohort study involving the largest reported grégpmliac
arrest patients, treated with MTH, we showed that distinct EEG patterimgydur
continuous EEG monitoring at 12 or 24 hours after cardiac arrest reliably
predict both good and poor neurological outcome. At 24 hours, istiriele

low voltage, or burst-suppression with identical bursts patterns pregioad
neurological outcome with a sensitivity of 48% and a specificity of 100%. In
contrast, at 12 hours, continuous patterns, either normalfiusdly slowed,
predicted good neurological outcome with a sensitivity of 56% and a speci-
ficity of 96%.

Our findings are in line with other studies reporting on EEG for prediction of
outcome of patients treated with MTH after cardiac arrest. In general, centin
ous patterns have been associated with good neurological outcomeuhath d
MTH and at normothermfat1317.18 |n contrast, iso-electric or low-voltage
patterns, burst-suppression, and status epilepticus at normothermibdeave
associated with poor neurological outcaé 21718 However, unlike in our
study, it was not always clear at which moment after cardiac arressEEG
assessed, which limits comparison. Our data show that the time of evaluation
from cardiac arrest is critical and thatidirences of EEG patterns between pa-
tients with good versus poor outcome are especially large in the first 24.hour
Therefore, we chose to assess predictive values at 12 and 24 hblese
critical time points were applied based on results of our previous study in 56
patients, which showed that EEG patterns evolve towards less specifimpatte



beyond 24 hours after cardiac arrest12. In the current study,dseisidelectric
and low voltage patterns, we extended the category of unfavorable BBEG w
“burst-suppression with identical bursts”, a distinct EEG pattern which als
appears to be invariably associated with poor neurological outtbme

Previously studied parameters for prediction of neurological outcomedediu
prehospital factors (initial cardiac rhythm, age or witnessed versusmiten
nessed cardiac arrest), as well as clinical (motor score at 72 haurgad
reflexes and pupillary light responses) and biochemical markersomeipe-

cific enolase, S-100B)%1220 However, since the introduction of MTH, only
bilateral absent SSEP responses at 72 hours and bilateral abp#latplight
reflexes at 72 hours still seem to reliably predict poor outcome, with false
positive rates of 0.7% and 0.4% respectielwhile of no single parameter,
predictive values were as high as those of early EEG measures. Why doe
EEG monitoring perform so well in predicting neurological outcome? The
EEG reflects cortical activity, mainly resulting from synaptic activity of pyra
midal cells in the corteX. It is generally assumed that synaptic transmission
is the first process to fail during cerebral ischefdjavhich makes the EEG
signal very sensitive toffects of ischemi#. In this study, we did not include
clinical parameters, since we focused on the EEG patterns within 24 hours
after cardiac arrest in patients treated with MTH. During this time interval,
all patients were sedated, limiting conclusive neurological examination. Still,
prediction of clinical outcome may be improved and extended to later time
points after cardiac arrest by combining neurophysiological, biochenaicdl,
clinical daté.

In our cohort of 148 patients, four (3%) had epileptiform activity within the
first 24 hours. All four had poor neurological outcome. This is in line with
previous literature, describing that epileptiform activity is associated wibh po
outcome, however not inevitably 67226 We therefore did not include
epileptiform activity or status epilepticus in our criteria for the prediction
of poor neurological outcome. More patients from our cohort probhhty
epileptiform activity at later time points, which was not structurally evaluated.
It is unknown whether treatment of these patterns, including generaleréd p
odic discharges, improves outcofie®. To address this issue, a randomized
clinical trial to estimate thefect of early and intensive treatment of these
patterns should be conducted.



Most of our patients were treated during MTH with propofol, or a combination
of propofol and midazolam. Although these sedatives influence EEG mstter
they did not &ect the predictive values of the specific EEG patterns in our co-
hort. Iso-electrical, low voltage, or burst-suppression with identicatbyrat-
terns cannot be solely induced by propofol amanidazolam. In the relatively

low dosages of propofol and midazolam that were used in our patients, the
EEG should have remained continuous in patients without postanoxic rauron
damagé®35 In burst-suppression patterns induced by propofol, bursts are
heterogeneous and appear and disappear gradti3ilywhereas our identical
burst-suppression patterns were all characterized by abrupt trasdigédween
bursts and suppressiorts There were no statistically significantfidgirences

in type of medication between the patients with good and poor neurological
outcome or dosage of midazolam (Table 4.1). The dosage of propofl wa
slightly higher in patients with a good neurological outcome, which might re-
flect less severe postanoxic encephalopathy probably resulting in nooisaa

Our study has certain limitations. First, a common problem in unblinded
studies investigating the prognostic value of a certain parameter may be the
“self-fulfilling prophecy”. Although EEGs were scoredfime and blinded

for the patients’ outcome, attending physicians were not blinded for the EEG
registration to enable treatment of epileptiform activity. Therefore, the EEG
could potentially have influenced clinical decision making regarding to discon
tinuation of further treatment. However, current guidelines regardiadgrirent
continuation were strictly followed and do not include the EEG during the first
24 hours. A second limitation is the visual analysis of EEGs. Although scoring
of the EEGs was performed by two reviewers blinded to the patients’ outcome,
and according to strict definitions, visual analysis, although gold stendar
remains partly subjective. The use of automated, quantitative methods may
provide a more objective assessmérit32

Conclusions

Distinct EEG patterns within 24 hours after cardiac arrest reliably preditt
good and poor neurological outcome of patients with postanoxic encegyhalo
thy after cardiac arrest, treated with MTH. At 24 hours after cardiagsarr
the combined group of iso-electric, low voltage, and “burst-suppressithn
identical bursts” is invariably associated with poor outcome. At 12 hours,
normal or difusely slowed EEG patterns are strongly associated with good
outcome. EEG monitoring within the first 24 hours after cardiac arrest may be
included in future clinical guidelines.
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Abstract

Objective: Electroencephalographic seizures, including status epilepticu

cur in 9—-35% of comatose patients after cardiac arrest. Mortality is 90-100%
Most physicians treat these patients with anti-epileptic drugs. However, it is
unclear whether (some) seizure patterns represent a condition in weath tr
ment improves outcome, or severe ischemic damage, in which treatment is
futile. We studied treatment, including it$fects on EEG and outcome, of
electroencephalographic seizures and status epilepticus of comatosdspatie
after cardiac arrest.

Design: Retrospective analysis of prospective observational tstuaty.

Setting: Medical intensive care units of two teaching hospitals.

Patients: Patients admitted for therapeutic hypothermia after cardiac arrest.
Intervention: None.

Measurements and main results: Thirty-one (22%) out of 139 patients were
treated with anti-epileptic drugs (fenytoin, levetiracetam, valproate, clon-
azepam, propofol, midazolam): two with one, nine with two, thirteen with
three, five with four, one with five, and one with sixffidgirent anti-epileptic
drugs. This treatment improved pathological EEG patterns in most patients.
However, all but one patients with electroencephalographic status epileptic
died. Outcome was assessed at six months with the Cerebral Performance
Category score. In patients with unfavorable EEG patterns at 24 htiars a
cardiac arrest, including a subgroup with seizures or GPDs, thereondifer-

ence in outcome between those treated with and without anti-epileptic drugs.
Otherwise, in a subgroup with relatively favorable patterns, the propoofio
patients with a poor outcome was lower after treatment with anti-epileptic
drugs.

Conclusions: In comatose patients after cardiac arrest, treated with bypoth
mia, the widely used practice of moderate treatment of electroencephalo-
graphic status epilepticus does not improve outcome and can be considered
futile. Future studies should focus on early and aggressive treatment.



Introduction

Of comatose patients after cardiac arrest, 40%—66% never regairsamis
ness as a result of filise postanoxic encephalopathy In these patients a
broad spectrum of electroencephalography (EEG) changes carsbered.
Electroencephalographic seizures or status epilepticus is described-in 9%
35%* and is associated with poor outcome: case fatality was 90%—100%
in prospective case series, despite treatment with anti-epileptic ttdgs

The diagnosis of seizures and status epilepticus on the electroencephalog
(EEG) in comatose patients after cardiac arrest is controv&tsial It may
consist of unequivocal seizures: generalized spike-wave dipebat 2 or
faster or clearly evolving discharges of any type/ata¥ faster, either general-
ized or focal. However, some experts also consider other rhythmic mdier
patterns, such as generalized or lateralized periodic dischargestbmihy
delta activity, as seizure activit§.

It is unclear whether (some) electroencephalographic seizure paittepas

tients with postanoxic encephalopathy represent a condition which can be
treated with antiepileptic drugs to improve patients’ outcome, or rather se-
vere ischemic damage, in which treatment is fufileCase series have sug-
gested that in patients with electroencephalographic status epilepticus, pre-
served brainstem reactions and EEG reactivity are associated withralféevo
outcomé&. However, it is unclear whether treatment with anti-epileptic drugs
reduces the risk of a poor outcome in these patients and if so, how aggress
this treatment should be. In the only prospective non-randomized interven
tion study, aggressive treatment up to pentobarbital induced burstesgum
resulted in a good outcome of 6% of patients with clinically overt or elec-
troencephalographic status epilepticus. This proportion is approximately the
same as reported in observational studies, irrespective of treihieht De-

spite this lack of evidence, most neurologists treat electroencephatagrap
seizures and status epilepticus in comatose patients after cardiac arrest with
anti-epileptic drugs and increased detection with continuous EEG monitoring
has led to increased prescripti§r®. However, only approximately one third
treats patients with electroencephalographic status epilepticus equal to those
with clinically overt status epilepticd&2C.

We evaluated treatment, including itexts on the EEG and patient outcome,
of seizures and electroencephalographic status epilepticus on corstiBEGu



in our prospective cohort study on the prognostic value of continu&G E
monitoring of comatose patients after cardiac arrest on the intensivergare u

Methods

Patients

We identified patients that were treated with anti-epileptic drugs (fenytoin,
levetiracetam, valproate, or clonazepam) for electroencephalogragihices

or status epilepticus from our prospectively collected cohort of comatase
tients after cardiac arrest, treated with hypothermia, between June &t 201
and March 31st 2013. These patients were included in a prospectiogtco
study on the predictive value of continuous EEG on outcome in two hospitals
in the Netherlands. Design, eligibility criteria, and main outcomes of the first
60 patients that were included in this study have been published previously
In brief, since June 1st 2010, consecutive adult comatose patientsafiéac
arrest, treated with hypothermia, were included within twelve hours after the
arrest to undergo continuous EEG monitoring on the intensive care uniti- Mo
toring continued until patients regained consciousness, died, or up ttefjge

The study was approved by the institutional review board (Medisch Ethisch
Toetsingscommissie Twente) and informed consent for continuous EEG mea-
surement was waived. Patients’ informed consent was asked for tfivliosv

up.

Treatment

Comatose patients after cardiac arrest were treated according totctenen
dard therapy, as described previodslyin short, hypothermia of 3& was
induced as soon as possible after the arrest and maintained for 24oydnrs
travenously administered cold saline and cooling pads. Propofol, midazolam,
or a combination of these was used for sedation to a levelodr -5 at the
Richmond Agitation Sedation Scale and discontinued after normothermia had
been reached, if possible. Fentanyl, remifentanil, or morphine was gagta
shivering. Treatment of epileptiform discharges was not included inttity s
protocol and was left to the discretion of the treating physician. If contislyo
infused propofol or midazolam dose was increased simultaneously with the
initiation of treatment with anti-epileptic drugs, this was considered as anti-
epileptic treatment.



EEG recordings

For all recordings, electrodes were applied according to the internhfibra

20 system, using 19 channels. Electrode impedances were kept bel@w 5 k
Sampling frequency was set to 256 Hz. A Neurocenter EEG system (Clinica
Science Systems, the Netherlands) or a Nihon Kohden system (VCM Nedica
the Netherlands) was used. Data were stored to diskffdine analysis.

Outcome assessment

The primary outcome measure of the study was the best score on theaCerebr
Performance Category (CPC) within six months dichotomized between “good”
(CPC 1 or 2) and “poor” (CPC 3, 4, or 5). Outcome assessment wasaton
three and at six months after cardiac arrest by telephone by a singldgates
(MT-C) that was blinded for treatment with anti-epileptic drugs. Secondary
outcome measures included mortality.

EEG analysis

EEG analyses were done at the initiation of and during anti-epileptic treatment,
and at 24 hours after cardiac arrest. EEGs first were analyzedeindeptly

by two investigators (MT-C, MvP) in automatically selected epochs of five
minutes at 24 hours after cardiac arrest. Each epoch was categosiism a
electric, low voltage, burst-suppressionffdse slowing, normal, or epilep-
tiform discharges. Epileptiform discharges included unequivocallviexp
seizures and generalized periodic discharges (GPDs). The investigate
blinded for the patients’ clinical condition during the registration, the reéngrd
time of the epoch, and the patient’s outcome. In case of disagreement, the fina
classification was decided by consensus. These standardized EEGeana
were done after the registrations and EEG played no role in initial treatment
decisions with regard to continuation of intensive care treatment. All EEGs
of patients who had been treated with anti-epileptic drugs were subsequently
reviewed by two observers (JH, MvP), who had access to the compbetelre
ings, but were blinded for the patients’ outcome.

Statistical analysis

The number of patients treated with the various anti-epileptic drugs, the pro-

portion of patients in whom this treatment improved the EEG, and the propor-

tion of patients with a poor outcome after treatment are presented in a descrip-
tive way for subgroups according to the EEG patterns at the time of treatment
initiation. Patients treated with and without anti-epileptic drugs are compared



Table 5.1: Baseline characteristics of patients treated with and without anti-epileptis.drug

Treatment with anti-epileptic drugs

Yes (n=31) No (n=108)

Age (mean years SD) 64+ 11 65+ 12
OHCA 29 95
Presumed cause of cardiac arrest

Cardiac 20 82

Other 5 11

Unknown 6 15
Initial rhythm

VF 21 76

Asystole 6 17

Bradicardia 2 4

Unknown 2 11
Propofol treatment 28 101
Propofol dosage (migg/h, meant SD) 3.0+ 0.7 28+1.1
Midazolam treatment 9 36
Midazolam dosagauy/kg/h, meant SD) 211+ 271 309+ 252
Fentanyl treatment 17 53
Fentanyl dosageuykg/h, meant SD) 1.6+ 0.7 1.8+ 0.8
Remifentanil treatment 9 33
Remifentanil dosagef/kg/h, meant SD) 4.7+ 2.3 4.2+0.7
Morphine treatment 3 23
Morphine dosageu@/kg/h, meant SD) 331+ 148 309+ 119

SD indicates standard deviation; OHCA, out of hospital cardiac arref; Véntricular
fibrillation; dosage, maximum dosage within the first 24 hours.

with regard to poor outcome for subgroups according to the EEG patterns a
24 hours after cardiac arrest, which are known to be related to oufcddata

are presented as proportions and odds ratio’s, including correisygo@8%
confidence intervals.

Results

March 31st 2013, 139 patients had been included (108 in Medisch 8pectr
Twente and 31 in Rijnstate Hospital). Baseline characteristics are presented
in 5.1. Blinded EEG evaluation could be performed in 121 at 24 hours.
Analysis at 24 hours of other EEGs was not possible in case of artifacts in
the automatically selected five minute epochs.

Thirty-one patients (22%) were treated with anti-epileptic drugs. This treat-
ment was initiated at a median of 47 hours after cardiac arrest (interquartile
range 36-76). Two patients were treated with one, nine with two, thirteen with



three, five with four, one with five, and one with sixfidirent anti-epileptic
drugs. Three of these patients had evolving seizures, twelve GPDsijrand
burst-suppression, during more than 30 minutes. Examples are shown in Fig
ures 5.1 and 5.2. Burst-suppression patterns that had been treatechtivith a
epileptic drugs consisted of bursts resembling epileptiform discharges with
duration of one up to tens of seconds and flat inter-burst intervals.uit e
patients with evolving seizures, GPDs, or burst suppression treatedmtith a
epileptic drugs had a poor outcome and died (Tables 5.2 and 5.3). The only
patient with a good outcome had GPDs intermixed with physiological activity.
Five patients with short episodes of rhythmic delta activity of three up to ten
seconds, and three with isolated sharp waves, both superimposefiuse|gi
slowed, but continuous patterns, were treated with anti-epileptic drugseTh

all had a good outcome.

In Table 5.4, patients treated with and without anti-epileptic drugs are com-
pared with regard to the risk of poor outcome for subgroups according to
the EEG patterns at 24 hours after cardiac arrest. There were no salyistic
significant diferences in the subgroups with relatively unfavorable EEG pat-
terns (iso-electric or low voltage, and burst suppression, evolvingrgsizor
GPDs). Otherwise, in patients withftlisely slowed or normal EEG patterns
at twelve or 24 hours after cardiac arrest, the proportion of patients \pibloa
outcome was lower after treatment with anti-epileptic drugs.

Discussion

In this prospective observational study in comatose patients after cardest,
treated with hypothermia, retrospective analysis of moderate treatment with
anti-epileptic drugs yielded no evidence fdfeet on outcome of patients with
electroencephalographic status epilepticus: all but one patients with ayolvin
seizures, GPDs or burst suppression treated with anti-epileptic draupa ha
poor outcome and died. However, all patients that had been treated with anti-
epileptic drugs because of short episodes of rhythmic delta activity or iso-
lated sharp waves superimposed ofiudiely slowed, but continuous patterns
had a good outcome. Among patients with these relatively favorable EEG
patterngd-?! the proportion of patients with a poor outcome was lower after
treatment with anti-epileptic drugs.

Many of our patients that were treated with anti-epileptic drugs fulfilled the cri-
teria for status epilepticus by semiology, EEG appearance, and duratiibn. S



Table 5.2: Anti-epileptic drugs with their @ects on EEG patterns and clinical outcome.

Drug (n) EEG pattern (n) Improved EEG Poor outcome
n (%) n (%)
Fenytoin (25) Evolving seizures (1) 1 (100%) 1 (100%)
GPD (11) 6 (55%) 11 (100%)
Burst suppression (8) 3 (38%) 8 (100%)
Isolated sharp waves (1) 1 (100%) 0
Intermittend rhythmic delta (4) 4 (100%) 0
Levetiracetam (7)  Evolving seizures (2) 1 (50%) 2 (100%)
GPD (2) 1 (50%) 2 (100%)
Burst suppression (1) 1 (100%) 1 (100%)
Isolated sharp waves (1) 0 0
Intermittend rhythmic delta (1) 1 (100%) 0
Valproate (11) Evolving seizures (3) 2 (67%) 3 (100%)
GPD (3) 1 (33%) 2 (67%)*
Burst suppression (1) 0 1 (100%)
Isolated sharp waves (2) 1 (50%) 0
Intermittend rhythmic delta (2) 2 (100%) 0
Clonazepam (9) Evolving seizures (1) n.a. 1 (100%)
GPD (3) 2 (67%) 3 (100%)
Burst suppression (1) 1 (100%) 1 (100%)
Isolated sharp waves (1) 0 0
Intermittend rhythmic delta (3) 3 (100%) 0
Propofol (8) Evolving seizures (0) - -
GPD (5) 3 (60%) 4 (80%)*
Burst suppression (1) 0 1 (100%)
Isolated sharp waves (1) n.a. 0
Intermittend rhythmic delta (1) 1 (100%) 0
Midazolam (5) Evolving seizures (0) - -
GPD (2) 0 2 (100%)
Burst suppression (2) 0 2 (100%)
Isolated sharp waves (0) - -
Intermittent rhythmic delta (1) 1 (100%) 0

Fenytoin initial dosage 1000-1500 mg followed by 200-300 mg daily in tweeslo
Levetiracetam 1000-1500 mg daily in two doses. Valproate initial dosagé-1800 mg
followed by 1000-1500 mg daily in two doses. Clonazepam single or tegpéalus of 1 mg.
Propofol 200400 mpr. Midazolam 8-10 mtypr. Burst-suppression patterns consisted of
bursts resembling epileptiform discharges of one up to five secondéaamderburst intervals.
Improved EEG pattern indicates temporary suppression of evolvingiresizreduction of
amplitude of generalized periodic discharges (GPD) or burst-sugipresdisappearance of
isolated sharp waves, or reduction of amplitude and rhythm of intermittesthmic delta
activity; EEG, electroencephalography; n.a. not assessable; *eiortly patient with GPDs
and a good outcome, GPDs were intermixed with physiological activity.
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Figure 5.1: Examples of EEGs of two comatose patients after cardiac arrest shgesray-

alized periodic discharges. These patients were normothermic angdedéh propofol 1 to

2.5 mgkg/hr. The EEG epochs were recorded 46 hours (A) or 68 hours {8) edirdiac arrest.
Filter settings 0.5-30 Hz.
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Figure 5.2: Examples of EEGs of two comatose patients after cardiac arrest shevohgng
seizures. These patients were sedated with propofol 1 to 2/kgrhg The EEG epochs were
recorded 19 hours after cardiac arrest, during therapeutic hypathé33 C) (A), or 78 hours

after cardiac arrest, after restoration of normothermia (B). Filter sstOrfs-30 Hz.



Table 5.3: Proportions of patients with improved EEG or poor outcome after treatmigmt
(combinations of) anti-epileptic drugs, according to the EEG pattern at itietion of treat-
ment.

EEG pattern at initiation of treatment (n) Improved EEG n Poor outcome n (%)
(%)

Evolving seizures (3) 3 (100%) 3 (100%)

GPD (12) 9 (75%) 11 (92%)

Burst suppression (9) 3 (33%) 9 (100%)

Isolated sharp waves (2) 2 (100%) 0

Intermittent rhythmic delta (5) 5 (100%) 0

Two patients were treated with one, nine with two, thirteen with three, five with fone

with five, and one with six dferent anti-epileptic drugs. Burst-suppression patterns consisted
of bursts resembling epileptiform discharges of one up to five secomdisflat inter-burst
intervals. Improved EEG indicates temporary suppression of evohdimyi®s, reduction of
amplitude of generalized periodic discharges (GPD) or burst-supipresdisappearance of
isolated sharp waves, or reduction of amplitude and rhythm of intermittgtbmic delta
activity; EEG, electroencephalography; n.a. not accessible; *, ithepatient with GPDs

and a good outcome, GPDs were intermixed with physiological activity.

Table 5.4: Proportions of patients with poor outcome treated with or without anti-epileptic
drugs according to EEG pattern at 24 hours after cardiac arrest.

EEG pattern at 24 hours Poor outcomePoor outcome OR (95% CI)
with AED without AED
/N (%) /N (%)
Iso-electric or low voltage @12) 55 (100%) 77 (100%) n.a.
Evolving seizures, GPD, or 14/17 (82%) 2329 (79%) 1.1(0.4t03.1)
burst suppression £46)
Continuously slowed #@61) 05 (0%) 754 (13%) 0.9(0.8t01.0)

AED indicates anti-epileptic drugs; OR, odds ratio of poor outcome of patiesated with as
compared to patients treated without AED; 95% CI, 95% confidence ithterva

all were treated only moderately and in none of them treatment induced burst-
suppression EEG. If these patients indeed had an electroencepphiogta-

tus epilepticus, they were probably not treatefisiently, especially since
treatment of status epilepticus in general improves outcome if directed at sup-
pression of electroencephalographic epileptiform disch&fgeghe modera-

tion of treatment in our cohort is representative for the general ambnale
towards treatment of electro-encephalographic seizures in comatosetpatie
after cardiac arre$#2%. This moderation reflects the uncertainty with regard
to the use of this treatment in these patients.

Apart from the intensity of treatment, the onset of treatment probably pfays a
important role. With continuous EEG monitoring starting twelve hours after



cardiac arrest, we found that in approximately one quarter of patientsheith e
troencephalographic status epilepticus, the epileptiform patterns stafted be
24 hours after cardiac arrest. In previous studies, EEG monitoring tarked

at a median of two to three days after cardiac arrest, indicating that diagnos
and subsequent treatment of electroencephalographic status epilsfdited
thereafter at its earlie$t?12 Mechanisms such as excessive glutamate release
are known to worsen brain damage in ongoing status epilepticus within twenty
to forty minute€3. Also, prolonged duration of status epilepticus reduces the
effect of treatment, e.g. due to receptorficking®. Thus, the initiation of
treatment many hours after the onset of electroencephalographic gidéys e
ticus may be too late to prevent irreversible damage.

Previous studies have focused on electroencephalographic statystiepdle

as a predictor of poor outcome after cardiac arrest and the identification o
patients in whom treatment of status epilepticus might be beneficial. These
have shown that sporadic patients with postanoxic encephalopathy after c
diac arrest and electroencephalographic status epilepticus may $uihie’
Identified possible determinants of a favorable outcome include a continuous
background pattef, preserved brainstem reactions, and EEG reacfivity
However, even in survivors, it remained unclear whether or notréssg/e)
treatment had improved outcome, since electroencephalographic statps epile
ticus after cardiac arrest is often spontaneously tran&ient

We found a possible beneficialfect of anti-epileptic drugs on outcome of
patients with relatively favorable EEG patterns, suggesting a neurofivetec
effect. The only neuroprotective treatment of proven benefit so far in twama
patients after cardiac arrest is therapeutic hypothern#arandomized con-
trolled trial on the éect of prophylactic treatment with anti-epileptic drugs is
ongoing (http//clinicaltrials.goyct2/showNCT01083784).

This study has limitations. First, although data on patient outcome and EEG
patterns were pre-specified and collected prospectively, data ondlod aisti-
epileptic drugs were retrieved retrospectively, implying possible obtenva

or selection bias. Second, since evidence fedat for treatment is lacking,
there was no treatment protocol. Therefore, both the nature and theitintens
of treatment diered among physicians. However, treatment never reached
an intensity to induce burst-suppression EEG and barbiturates wersetht u
Third, although the Glasgow Coma Scale score was measured daily, infor-



mation on other clinical parameters had not been collected prospectindly, a
retrospective collection appeared unreliable. Therefore, the giopaf pa-
tients with clinically overt myoclonic status epilepticus was unclear. However,
in patients after cardiac arrest, for both electroencephalographiacegiand
clinical myoclonia it is not clear whether these represent “true” seizwitls

a possibility to return to physiological activity, or an expression of sefige
versible) damag®. For most neurologists the threshold to treat patients with
overt myoclonia is lower than for patients with non-convulsive electroence
phalographic seizures. However, irreversible damage is probabiy revee
likely in patients with myoclonia, since the risk of poor outcome is latgerd
neuronal necrosis is more comntdn Fourth, we selected patients based on
treatment with specific anti-epileptic drugs and only identified continuously
infused propofol or midazolam as a treatment against electroence pyaihagy
seizures, if dosages increased simultaneously with the initiation of treatment
with anti-epileptic drugs. We cannot exclude that in some patients electroen-
cephalographic seizures were treated solely with propofol or midazolam.

Conclusion

In comatose patients after cardiac arrest, treated with hypothermia, benera
practice of treatment of electroencephalographic status epilepticus iaclude

moderate treatment with anti-epileptic drugs. Although widely used, such

treatment does not improve patients’ outcome and can be considered futile.
Future studies should focus on early and aggressive treatment.
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Abstract

Objective: The implementation of a computer assisted system for real-time
classification of the electroencephalogram (EEG) in critically ill patients.
Methods: Eight quantitative features were extracted from the raw EEG an
combined into a single classifier. The system was trained with 41 EEG record-
ings and subsequently evaluated using an additional 20 recordingsugfhr
visual analysis, each recording was assigned to one of the followingaras:
normal, iso-electric, low voltage, burst suppression, slowing, and Bfiths
generalized periodic discharges or seizure activity.

Results: 36 (88%) recordings from the training set and 17 (85%) dewgs

from the test set were classified correctly. A user interface was qume!m
present both trend-curves and a diagnostic output in text form. Impletimenta

in a dedicated EEG monitor allowed real-time analysis in the intensive care
unit (ICU) during pilot measurements in four patients.

Conclusions: We present the first results from a computer assisted E&G in
pretation system, based on a combination of eight quantitative features. Our
system provided an initial, reasonably accurate interpretation by nasriexp

of the most common EEG patterns observed in neurological patients in the
adult ICU.

Significance: Computer assisted EEG monitoring may improve early detection
of seizure activity and ischemia in critically ill patients.



Introduction

Evaluation of the brain function in patients from the intensive care unit YICU
is important, since these patients are at risk of several secondary Graiasn
such as (non-convulsive) seizures, cerebral ischemia and iecreasebral
pressuré?. Clinical examination of these critically ill patients is however
limited, even more so when they are sedated and ventfigtedvionitoring

of the brain in these patients is therefore highly desirable. Neuroimaging pro
vides good anatomical information, but its functional information is very often
limited and typically of a discontinuous natdre Since the electroencephalo-
gram (EEG) is sensitive to changes in brain activity caused by both epileptic
seizures and ischemia, continuous EEG (cEEG) can provide a useffibtoo
real-time brain monitorin§%4%-2 Among others, Jordan et al. evaluated the
usefulness and clinical impact of cEEG monitoring in the neuroscience ICU.
They concluded that 86% of all cEEG recordings in the neurosciendénid

an impact on clinical manageméfit

Despite the potential clinical relevance of cEEG monitoring in the ICU, its use

in many ICUs remains limited. One of the main reasons for this involves the
complex and time-consuming task of interpretation of each recording by means
of visual analysi$>® Raw EEG can hardly be interpreted by non-experts,
which includes most ICU nurses and ICU physicians. To overcome this pro
lem, several attempts have been made in computer-assisted real-time detection
of deteriorations in brain function by extracting quantitative EEG (QEE&) fe
tures from the raw data. Such systems make earlier diagnostics and treatment
possible. For example, various qEEG features have been proposetet d
seizured14 to identify vasospasms after subarachnoid hemorrta§eto
differentiate between patients with good neurologic outcomes and those with
poor outcomes after cardiac arrést® and to predict the clinical outcome of
(sub-) acute stroke patiertfs?. However, these features have only focused

on specific patient categories.

Ideally, all feature types should be combined into one overall systenbleapa

of classifying the common EEG patterns observed in the ICU with reasonable
accuracy. This will allow unambiguous interpretation of the EEG by ICU per-
sonnel. The patterns to detect in the adult ICU should include normal EEGs,
iso-electric EEGs, low voltage EEGs, burst suppression patterns, Bikbss
regional or dffuse slowing (e.g. due to ischemia in post-anoxic and stroke
patients, contusions in trauma patients or postictal slowing), EEGs with seizure



activity, and EEGs with generalized periodic discharges (GPDs). litiawld

an adequate representation of the information is required, providingarglev
information to ICU personnel in a simple and clear manner, while presenting a
more detailed analysis (including raw EEG data) to the consulting neurologist
or clinical neurophysiologist.

This paper describes the implementation of a real-time EEG classification
system based on a combination of several gEEG features. The creftion o
such a system is a first step towards real-time, computer-assisted detection
of deteriorations in brain function, including seizure activity and ischemia in
critically ill patients.

Methods

Patient data

EEG data for training and evaluation was selected from the digital EEG
database of the Medisch Spectrum Twente hospital. All EEG registrations
in the database were classified by experienced electroencephalegraping
standard visual analysis. Both training and test set contained a ref@@se

set of EEG patterns. At least one 5 min epoch was selected in each EEG,
reviewed by an experienced electroencephalographer (MvP) émuad time,

and assigned to one of the above described categories. Uniformsepech

used so that each of them contained only a single EEG pattern. In addition,
only epochs with minimal or no artefacts were used (as judged from visual
inspection) with the exception of three. These three epochs contained many
artefacts and were used for an initial training step to detect artefactepbch
selection and second review by the electroencephalographer wapriome

the automated epoch classification by our system. Therefore, the cldgsifica

by the electroencephalographer was blinded to the output of the system.

All EEGs were recorded with 19 electrodes placed on the scalp according
to the 10-20 system. The impedances were kept below 5 kOhm to reduce
polarization €ects and the sampling frequency was either 250 Hz or 256 Hz.
All recordings were made using a BrainLab EEG recording system (OSG
BVBA, Belgium) or Neurocenter EEG (Clinical Science Systems, Leiden,
Netherlands). The Institutional Review Board waived the need for miedica
ethical assessment and informed consent, since all recordings wmene

as a standard procedure in the clinical evaluation of the patients.



Training set

The training set consisted of 41 EEG epochs with a duration of 5 min each,
recorded from 39 diierent patients. Thirty-five of these patients were admitted
in the ICU, three were healthy outpatients with normal EEGs and one patient
was admitted to the stroke unit. To train the system for artefact detection, three
epochs were included that contained a considerable amount of artefacts

Test set

An independent test set, containing epochs froffedént patients than in-
cluded in the training set, was used for the evaluation. Seventeen of these
recordings were from ICU patients and three were from outpatients. eAll s
lected epochs contained artefact free, 5 min duration EEG data. Tonpieve
selection bias, the test set was selected from the EEG database by dgphysic
who was naive for the current study. Details of the training and testreet a
summarized in Tables 6.1 and 6.2.

Evaluation in the ICU
Real-time pilot measurements were performed in four ICU patients to evaluate
the technical feasibility of the classifier during real-time EEG registrations.

Feature extraction

The implementation of the system was divided into several steps. First, all
signals were filtered by a zero-phase 6th order butterworth bandgtess fi
(from 0.5 to 30 Hz) and transformed to both source and longitudinal bipolar
montages. Subsequently, eight gEEG features were calculated. Beese
features, a classification was made for every 10 s segment by usingsedec
tree. Finally, a single interpretation for each 5 min epoch was determined.
All routines were implemented in Matlab (The Mathworks Inc.). A set of
features was calculated for each 10 s segment of EEG. Most featumept

for the Brain Symmetry Index (BSI) and burst and suppression inder we
calculated after re-referencing the EEG to the source montage. To limit the
potential contribution of eye blink artefacts, the two most frontal channzls F
and Fp2 were discarded for these feature types. To calculate thedmakst
suppression index, all 19 channels (including Fpl and Fp2) were Udwesl
longitudinal bipolar derivations F4-C4, C4-P4, P4-02, F3-C3, C3PB3

01, F8-T4, T4-T6, T6-02, F7-T3, T3-T5, and T5-01 were usedltalate

the BSI. For both the burst and suppression index and the BSI, a siagie v
was obtained for the complete 10 s EEG epoch. This is in contrast with the rest
of the features, which provided a value for each individual charepstely.



Table 6.1: Results of the training set. In column 3, “c” and “x” denotes correctly Bnd
correctly classified epochs respectively. sBfirst suppression pattern, B&ffuse slowing,
RS=regional slowing, GPDsGeneralized periodic discharges, PAtost-anoxic encephalopa-
thy.

Patientno. EEG pattern Results Remarks
1-4 Normal c One ICU patient and three outpatients.
5-7 Iso-electric c Two EEGs had ECG artefacts.
8 Low voltage c
9 BS (with several types of x Suppressions were missed because of
artefacts) the artefacts. A correct warning about
artefacts was given.
10a BS (bursts contains EMG ¢ Interpreted as high frequency artefacts.
activity)
10b Same EEG as 10a, but after Interpreted as a burst suppression pat-
an injection with a muscle tern.
relaxant (Esmeron).
11-13 BS c
14 BS X Interpreted as slowing, because most
(low amplitude) bursts were missed.
15-16 DS in a patient with PAE. ¢
17a DS+ RS in a neurotraumac
patient.
17b Same EEG as no. 17a, but a
few hours later after further
deterioration.
18-22 DS+ RS in a neurotraumac
patient.
23 DS in a neurotrauma patient.x One brain region was interpreted as
seizure activity instead of slowing
24 RS in a neurotrauma patient.c
25-26 DS+ RS in a post-surgicalc
patient.
27 DS+ RS in a stroke patient. ¢ Measured in the stroke unit.
28 DS+ RS in a coma patient. ¢
29 DS+ GPDs in a patient with (Low amplitude) GPDs were missed,
PAE. the DS was classified correct.
30 GPDs in a heurosurgery ¢
patient.
31-34 GPDs c
35-36 Nonconvulsive status c
epilepticus.
37-38 DS+ EMG artefacts. c
39 DS+ high amplitude X Artefacts were interpreted as seizure ac-

artefacts. tivity.




Table 6.2: Results of the test set. In column 3, “c” and “X” denotes correctly andriectly
classified epochs respectively. Bifurst suppression pattern, Biffuse slowing, RSregional
slowing, GPDsgeneralized periodic discharges, PAtost-anoxic encephalopathy.

Patient no. EEG pattern Results Remarks
1-2 Normal EEG c Measured in outpatients.
3-4 Iso-electric c
5 Low voltage EEG, but X ECG artefacts were interpreted as
normal EEG. bursts.
6 Low voltage EEG, but X Measured in an outpatient. Most epochs
normal EEG. were interpreted as normal and not as
low voltage.
7-10 BS c Two with long*20 sec) and two with
short 10 sec) interburst intervals.
11-12 DS in a patient with PAE. ¢
13-14 DS+ RS in a neurotraumac
patient.
15 DS+ RS in a coma patient. ¢
16 DS+ RS in a surgical c
patient.
17 DS+ GPDs X GPDs were missed, the DS was classi-
fied correct.
18 GPDs c
19 Seizure activity andr c
GPDs.
20 Nonconvulsive status c
epilepticus.

For the features based on the power spectrum, a power spectral deasity
estimated using Welch’s averaged periodogram method. Each 10 s seffment
EEG was windowed for each channel and detrended using a Hammingwindo
with a length of 512 sample points. The resulting spectra from each segment
were averaged and one spectral density with a resolution of approximately
0.5 Hz was obtained per channel.

Mean amplitude

The mean amplitude of the EEG was primarily used to classify iso-electric
EEGs and low voltage EEGs. In addition, signals with very high mean am-
plitudes were interpreted as containing either seizure activity or artetheets,
pending on the outcome of the other features. The mean amplitude of each
channel was calculated as the mean of the absolute value of that channel.



Frequency analyses

The alpha to delta ratio (ADR$2922and spectral edge frequency (SEFX)
were used to detect slowing of the EEG patterns. The ADR is calculated as
the power ratio between the alpha (8—13 Hz) and delta band (0.5-4 He). Th
SEF is the frequency below which a certain percentage (denoted bfjthe

total power is located. In this study, the Sfgvas used and the total power
was defined as the power between 0.5 and 15 Hz. To detect high fgquen
artefacts such as those caused by muscle contractions, we introdulaiggh a “

to low frequency power ratio”: the power ratio between 25-30 Hz and28.5—
Hz.

Burst and suppression index

For the detection of burst suppression patterns and GPDs, a nogtlamat
suppression index was introduced as illustrated in Figure 6.1. First, tha sign
was pre-processed with a non-linear energy operator (NLEO) edkéia

¢(N) = [(Xn-1 - Xn-2) = (Xn - Xn-3)|» (6.1)

wherex, denotes the current sample of signalx,_1 the first sample before
samplen, etc!?. This pre-processed signal shows which parts of the EEG
have a high local energy (high amplitude gorchigh frequency). A moving
threshold was used to detect the energy increases in the signal. Thegrunn
threshold was set at four times the mean plus four times the standard deviation
of the preceding 0.5 s of the signal, with a minimum of |\)?. After the
detection of a burst, the 0.5 s that followed were ignored to prevent a single
burst from being detected more than once. This was performed for all 19
channels. A burst was required to be present in more than 10 chaimeltas
neously (within a window of 0.2 s) to be classified as a true burst. Suppness
were detected in a comparable way. The same NLEO was applied to the EEG,
but the threshold for the detection of suppressions was fixedW&5 If the
amplitude of the signal was below this value for more than 1.5 s in 10 or more
channels at the same time, it was interpreted as a suppression. A 10 époch
EEG was interpreted as a burst suppression pattern if at least onarhdiene
suppression were detected in that epoch. GPDs were detected with the same
method as the burst detection method. Generally, GPDs occur multiple times
in a 10 s epoch. Therefore, 10 s of EEG with three or more bursts andutitho
any suppressions were interpreted as GPDs.
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Figure 6.1: Burst and suppression index for one channel. The raw EEG is shothe ipper
plot and the middle plot shows the same EEG after applying a NLEO (blagk}ter with a
running threshold (red) for the detection of bursts. The threshold isdbas the mean and
standard deviation of the previous 0.5 s of the signal. The detected hrestsarked with blue
asterisks. The bottom plot shows the same EEG after the NLEO was agpligtiey-axis is
scaled. The red line in this figure represents the fixed threshold for thetia of suppressions.
A suppression is detected (marked with a blue asterisk) if the signal is lelethreshold for
more than 1.5 s.

Nearest neighbor coherence

The nearest neighbor synchronization is the coherence betweetiaulpar
electrode and its surrounding (nearest neighbor) electfodgimice synchro-
nization is often increased during seizure activity, this feature was nlesse

one of the features for the detection of seizures. The nearest neigbier-

ence was implemented as the mean coherence between each channel and its
neighbors in the frequency range between 0.5 and 15 Hz.

Periodicity based on autocorrelation analysis

The periodicity of the EEG is often increased during seizures as well. To
detect epochs with an increased periodicity, a measure for periodicityseas
based on autocorrelation. This was done similar to the method proposed by
Deburchgraeve et al. and Liu et 24 First, the autocorrelation functions

for each window of 5 s were calculated with an overlap of 4 s. This was
done for all channels. The zero-crossings in these autocorrelatmtidas
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Figure 6.2: Autocorrelation of an EEG epoch with seizure activity. Intervals betweendio-
crossings of this autocorrelation are regular. The arrows indicate itietvals are compared
(each interval is used twice

were then detected. To be classified as true zero-crossings, the maximum
autocorrelation value and the time interval between two zero-crossings had
to be larger than a given threshold. After detecting the zero-crossings,
ratios between dlierent zero-crossing intervals were calculated. An example
of this is shown in Figure 6.2. The mean value of these ratios was used as
a measure for the periodicity. The value approaches 1 for signals with high
periodicity and becomes higher or lower than 1 for signals without periodicity

If less than four or more than sixty zero-crossings were present, thalsig
was considered as non-periodic, and the measure of periodicity waslnot
culated. Also, epochs with very low energy (mean value of a signal of less
than 2uV? after applying NLEO) were ignored. The measure for periodicity
was calculated for each channel and for each 5 s window. The medsure
each window in a single epoch were averaged per channel and thedgnor
epochs were discarded. This resulted in a single value per chanreghqe.

In some cases, all windows of a channel were ignored in the calculatimseT
channels were then interpreted as non-periodic.

Brain Symmetry Index

The Brain Symmetry Index (BSI) was designed to detect asymmetries between
the left- and right hemispheres of the br&ir?’. In this study, we used a pair-
wise derived variant of the BSI comparable to the variant recently intediu



by Sheorajpanday et &k For this variant, the BSl is defined as

K
n=1

with for channels in the right hemisphere, and a similar expression fonel&an

in the left hemisphere. Her, is the number of Fourier cigcients andM is

the number of channel pairs, while denotes the Fourieffictent with index

n of channekchevaluated at timé Herebyt corresponds to a particular epoch

[t — T, t] with durationT. A period of 10 s was used fdr and the BSI was
calculated in the frequency range from 0.5 to 25 Hz with a spectral battdwid
of 0.5 Hz. The BSl is bounded in range between zero (perfect symnoetayl f
channels) and 1 (maximum asymmetry). The pairwise variant of the BSI was
used to increase the sensitivity for abnormalities tiéeca diterent regions

in both hemispheres (for example patients with traumatic brain injury). In
contrast to the study of Sheorajpanday et al., we used a bipolar longitudina
montage in the calculation of the pair-wise derived variant of the BSI.

Rn,ch(t) - Ln,ch(t)
Rnch(t) + Lncn(t)

BSI(t) = M—lK > : (6.2)

M
ch=1

Classification: decision tree

To preserve relevant information about localization and time, our systesn cla
sified each 10 s epoch in four defined brain regions: left anteriopdstierior,
right anterior and right posterior. The left anterior region consistethahnels
F8, F4, Fz, T4, C4 and Cz, the left posterior region T3, C3, Cz, ToPR&Nd
01, the right anterior region F7, F3, Fz, T3, C3 and Cz, and the rigdtepor
region T4, C4, Cz, T6, P4, Pz and O2. To obtain a classification perrregio
the feature values of all channels in that region were averaged addruthe
decision tree. Since the periodicity measure did not necessarily haveea valu
for each channel, the third lowest value of all non-discarded chaimekch
brain region was used.

A decision tree was constructed based on the prior knowledge about EEG
patterns in several conditions as encountered in ICU patients. In this way,
we tried to mimic the way a neurologist would describe the EEG. After the
initial design, the decision tree was improved by using EEG recordings from
the training set. In several steps, the boundary values and the ordee of
features were adapted to improve the outcome of the classified training set.
For each step, we analyzed which EEG patterns were classified intyrrec
and for what reason. Focus was not only placed on the percentdgisadiy
classified patterns, but we also considered the severity of a misclassifizatio
clinical practice. For example, the detection of patterns with seizure activity



Table 6.3: The most common EEG patterns and the quantitative EEG features udagsifyc
these patterns. The features are listed in the same order as they appeaténision tree.

EEG Pattern Quantitative EEG feature

Iso-electric Mean amplitude

Low voltage Mean amplitude

Artefacts High to low frequency ratio, mean amplitude

Burst suppression  Burst and suppression index

GPDs Burst and suppression index

Seizure activity Autocorrelation, nearest neighbour synchronizatiean amplitude
Slowing Spectral edge frequency and alpha to delta ratio

Normal -

and slowing was implemented with a cut-ealue which had a relatively high
sensitivity (and lower specificity), while it was decided to be more contieeva
with the definition of an iso-electric EEG by limiting the sensitivity for that
category. Table 6.3 shows which features were eventually used to glassif
each pattern. The final version of the decision tree was applied on thagrain
set again, and afterwards on the independent test set.

In general, the most discriminating features should appear first in the deci-
sion tre€®. For our system, the mean amplitude was the most discriminating
feature; EEGs with very low mean amplitudes can only be iso-electric or low-
voltage and almost all other features cannot be defined reliably. Similarly,
EEGs with high mean amplitudes typically contain burst suppression patterns,
seizure activity or (high amplitude) artefacts. The mean amplitude was there-
fore the first feature evaluated in the tree. Subsequently, EEG epdths w
an increased “high to low frequency power ratio” were classified ashepo
with artefacts, since further classification of signals with many artefacts is
unreliable. Then, the presence of bursts and suppressions waatedata
detect burst suppression patterns and GPDs. If the signal did niatic@my
bursts, the EEG was tested for seizure activity by evaluating the syrizaron
tion, periodicity and amplitude. The seizure activity check was performed
after the detection of GPDs, since GPD patterns can also have an intrease
amplitude, synchronization and periodicity. Two less specific featurestiver
SEF and ADR. Although they are very sensitive for the detection of slqwing
these features are only useful when other EEG abnormalities (suclzasese
activity) are excluded. For this reason, the SEF and ADR values weredla

at the bottom of the tree, to distinguish slowed EEG patterns from normal EEG
registrations. Diagrams of the full decision tree are presented in Figu8es 6
and 6.4.
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Synchronization

Increased Normal
(>0.45) (<0.45)

Periodicity Periodicity

Increased Normal Increased Normal
(<0.6) (=0.6) (<0.6) (=0.6)
Seizure Mean Mean No seizure
activity Amplitude Amplitude activity
Increased Normal Increased Normal
12) «12) 12) «12)
Seizure No seizure Seizure No seizure
activity activity activity activity

Figure 6.4: Decision tree for the detection of seizure activity. This tree representyrélye
colored “Seizure Activity Tree” blocks in the overall decision tree of Fg6.3. This smaller
decision tree is used to detect whether an epoch contains seizure aefdtyts output is
either “No” (no seizure activity) or “Yes” (seizure activity). This deoisis made based on
a combination of synchronicity, periodicity and mean amplitude of the EE@akid\fter this
decision, the remainder of the overall decision tree is used for the fedarization of the
epoch.

User interface

The output of the decision tree is displayed in a novel user interfaceugdre
interface of two epochs of the test set are shown together with a small part
of the raw EEG in Figure 6.5. The upper left part of the interface consists
of four plots, one for each brain region, with the output of the decisiom tre
as a function of the epoch number. In the two upper figures on the right
side, the trend of the BSI and the power spectrum of both hemispheres are
shown. Since asymmetries can only be measured when the activity of left and
right hemispheres are compared, the BSI cannot be calculated fobesinh
region separately and is therefore displayed separately. In the bottbvmf pa
the interface, the interpretation of the preceding 5 min recording is presente
in a textbox for each brain region separately. This interpretation is equal to
the most prevalent output of the decision tree for each brain region in this time
frame. Two exceptions are made for iso-electric EEGs and burst sgiqne



Pairwise BSI

A Left Anterior Right Anterior

P2 o\ o™yt 0,
FBTA oo s s b, ot
TATE e g N g
TOO2 | er A g s
FOUFT oo o P Pt
FITS o pm e M mpm it

TETE A A

Zd 2
Tims (min) Tima (rie)

Left Posterior Right Posterior Powerspectrum per hemisphere

=]

TEO1 VARAAR A,
FO2FA i o™ Nt pn P P
FACH it N e a

CAPE s

PAO2 i f e e
FPIFS o A A N ao e
F3C3 i S N e
CIPY s o P A s
P30T s o e o Vs e
e A

CZPZ e A e [ 100 Y
Ts

Slightly asymmetric EEG with moderate diffuse slowing.

B Left Anterior Right Anterior Pairwise BS|

=y

FaTa o

TET8 o\ o Ay

T6-02 . ,/J\ :
T e T iy

7 1

NAA A Ay 't Posterior Right Posterior
TETB! e el mepo Apedgrrsintpocn gt
T80 ot A
Fp2F4 ,\/v/\vc\‘/\v\/v'k
i N
CAPA o\l e
P02 /A
FBATS i Sl N A A AN

—

€3P3 Py e P Symmetric EEG vith generalized periodic discharges.

Ts

Figure 6.5: Two examples of the user interface showing the results for two registsatiche
test set, together with a small part of the raw EEG. The results of the detiemare displayed
in the interface as trend curves (upper panels) and in text (lower |eétlpa(ART=artefact,
Seizseizure activity, GPDsgeneralized periodic discharges, Nemmormal, Slow=slowing,
Burst S=burst suppression, Low Mow voltage, Ise-iso-electric and BSiBrain Symmetry
Index). A: User interface of a neurotrauma patient witfiudie slowing (patient no. 14). B:
User interface of an EEG epoch containing GPDs (patient no. 18).

patterns with long suppressions. To classify an EEG as iso-electric,uall fo
brain regions have to be iso-electric for the complete 5 min. If not, the EEG
is interpreted as low voltage. If most of the epochs were interpreted as iso-
electric or low voltage, and a few as burst suppression, the EEG wagristienl

as a burst suppression pattern with long interburst intervals.



In addition to these outputs, a range of possibilities was introduced for the
interpretation of the BSI: EEGs were classified as “symmetric”, “slightly
asymmetric” or “asymmetric”. In a ffuse slowed EEG, the degree offdse
slowing (“severe slowing”, “slowing” or “moderately slowing”) was dispéal

as well. Finally, the computer interpretation of the last 5 min was illustrated
using a color coded head. This head displays a brain region as regiares
activity or GPDs, gray for normal EEGs, blue for slowing, burst sepgion

or low voltage EEGs, or black for iso-electric EEGs.

Implementation for real-time analysis

Our interpretation algorithms were implemented into the Neurocenter EEG
monitoring system of the Medisch Spectrum Twente (Neurocenter EEG, Clin-
ical Science Systems, Netherlands). Instead of using Matlab, the sceps w
executed in the GNU Octave open source platform (www.octave.org).

Results

The results obtained from evaluating the training set with the final version of
the decision tree are given in Table 6.1. In the training set, 36 out of 41SEEG
(88%) were classified correctly. Two out of the five misclassificationsbean
explained by artefacts. One of them was an EEG with a burst suppression
pattern. The suppressions were not detected due to artefacts in the signa
although a correct warning about the presence of artefacts was. givéhe

other EEG, artefacts were wrongly interpreted as seizure activity instead
high amplitude artefacts. Two other misclassifications were caused by either
missing bursts or GPDs with low amplitudes. The final EEG was misclassified
in a single brain region, where slowing of the EEG was classified as seizure
activity, the other three brain regions were classified correctly as slowing

After optimizing the decision tree with the training set, an evaluation was done
on a new independent test set. The outcome of this evaluation is shown in
Table 6.2. Seventeen out of twenty EEGs (85%) were classified corréxtly

the three incorrect interpreted EEGs, two were low voltage EEGs. One of th
low voltage EEGs contained many ECG artefacts and these were interpgeted a
bursts. This caused the EEG to be misclassified as a burst suppredséon. pa
The second low voltage EEG was classified as hormal. The last misclassified
EEG was caused by missing GPDs with low amplitude.

The real-time implementation of our system was evaluated in four ICU pa-
tients. Simulations in a Matlab environment showed that the algorithm was



fast enough for real-time implementation; however the Octave implementation
of Neurocenter was much slower. In fact, the current Octave versitimeo
classifier allowed analysis of only the first 10 s of each 30 s in real-time, while
the other 20 s had to be discarded. The raw EEG data was stored without
interruption to be available for review by the consulting neurologist. No other
technical problems occurred during the measurements. For each ofuthe fo
registrations, the classifier showed satisfying correspondence lretwesys-

tem and human interpretation. An example of the interface in a long term (4
h) registration is shown in Figure 6.6. At the beginning of the registration,
the EEG was mainly diuse slowed with superimposed muscle contraction
artefacts. At the end of the EEG, the pattern showed GPDs and peribdssof
suppression which was interpreted correctly by the classification algorithm.
this particular case, this was initially noted by the interpretation of the user
interface. Subsequent reviewing of the raw EEG data indeed showBd.GP
The patient was treated for a non-convulsive status epilepticus aneeredo
well.

Discussion

Monitoring brain function in the ICU is very important, since ICU patients are
at high risk of various secondary brain injuries such as seizuresrebred
ischemia. Although the EEG is very sensitive in detecting changes in the
neurological status of patients, cEEG monitoring in the ICU is limited due to
the fact that the signals areflicult to interpret by non-experts. A reliable real-
time classification system will reduce the drawback of the visual interpretation
burden and will facilitate the use of cEEG in the ICU. This should allow earlier
diagnosis of ischemic events and seizure activity. With the current availability
of treatments for acute ischemia, the early detection of cerebral ischemia (in
a reversible state) has great potential for infarct prevefitidBeizures after
brain injury are associated with a less favorable clinical outcetheand early
detection and treatment can most likely improve the outcome. Early detection
of seizures with cEEG is therefore very relevant to protect the bram fro
seizure-related injury in critically ill patientg2°.

In this study, we present an EEG classification system for monitoring ICU
patients, based on a combination of eight gEEG features. Thirty-six EEG
epochs out of 41 (88%) and 17 epochs out of 20 (85%) were clabesdieectly

in the training and test set respectively. These results indicate that tieensys
can have a significant impact in the clinical setting. For example, the group
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Figure 6.6: The user interface of a long EEG registratior (h) for patient no. 1. Initially,

the EEG shows a ffuse slowed pattern with many EMG artefacts. After a few hours it evolves
into GPDs and an occasional burst suppression pattern. The comgregioesented as the color
coded map and in text) is based on the preceding 5 min of EEG. {AR&fact, Seizseizure
activity, GPDs=generalized periodic discharges, Nemnormal, Slow-slowing, Burst Sburst
suppression, Low ¥low voltage, Ise-iso-electric and BSiBrain Symmetry Index).

of slowed EEGs was classified very well, showing that early detection and
treatment of ischemic events is possible. Although our algorithms do not yet
reach the classification accuracy of an experienced electroencgpytier,

it does allow for an initial evaluation by non-EEG experts and facilitates the
use of cEEG monitoring in the ICU. A regular review of the EEG data by
electroencephalograhpers remains of course an essential part indised
making process.

The two low voltage, but otherwise normal EEGs included in the test set were
both misclassified, most likely because of ifistient training the decision

tree on low voltage EEGs: only one low voltage EEG was included in the
training set. Because of this, the chosen boundary for the mean amplitude
between normal and low-voltage might have been chosen too low. In one of
the misclassified low voltage EEGs, many ECG artefacts were interpreted as
bursts and this was misclassified as a burst suppression pattern. Bimel sec



low voltage (but normal) EEG was classified as normal; therefore the misclas-
sification would have had minimal clinical impact. Although great care was
taken to select artefact-free epochs, various registrations includee tegh

set did contain artefacts. Most of the misclassifications were caused by the
presence of these artefacts or by missing low amplitude bursts or GPDs. We
tried to train the system in handling EEGs with artefacts by including three
registrations with artefacts in the training set. However, we are well awate th
the number of dterent artefacts is much larger than three and that the present
system is not dticiently trained for all artefact types. As the reliable detection
of artefacts is highly relevant in the daily use of a system in the ICU, additiona
improvements for the detection of artefacts are required.

It is well known that critically ill patients with GPDs have a poor prognosis
for survival, but at present it is not clear if treating or preventing GRll
lead to an improved outcome in these patiéits®3 There is no consensus
regarding the need to treat GPDs or how aggressively they shouldsbedre
Therefore, the clinical consequences of missing GPDs by the clasgsifier a
unclear.

A novel interface for our classification system was presented. Thettmtt

and color coded head in the interface allow a quick interpretation by non-
EEG experts. Extra panels in the interface present additional information to
the neurologist and clinical neurophysiologist, and the raw EEG datatitlan s
be reviewed by the consulting neurologist or clinical neurophysiologiee T
dynamics of longer EEG registrations can be seen with a single glance at the
four time-curves representing the output of the decision tree for eatteof
four brain regions.

In the comparison with the clinical evaluation, we used the output of the classi-
fier. Therefore, there was no additional visual interpretation of thel ttarves

in the user interface. Of course, it is possible that the EEG shows signtifica
changes within 5 min which may limit the performance of the classifier. There-
fore, for our present evaluation we decided to use uniform EEG epoch

The system was implemented in a dedicated EEG monitor suitable for real-
time analysis in the ICU. Pilot measurements performed in four neurological

ICU patients showed that the real-time use of the classification system at the
bedside of the patient is technically feasible. However, we note that thentur



real-time implementation of the classifier allowed analysis of the first 10 s
of each 30 s epoch only, while the other 20 s had to be discarded for com-
putational reasons. With mordfigient routines, faster software, and higher
processing speeds, skipping epochs should not be necessa. t@atypical

time scales during which changes occur however, this does not seemato be
critical issue. The evaluation of our system in four real-time registratiolss wa
satisfying. Our first impression was that the performance in these regisga
was similar to those obtained in th&lme analysis. An extended evaluation in

a larger group of ICU patients is currently in progress.

Similar to the observations presented in the study of Claasserf&tracord-

ings in our patients showed that continuous monitoring is highly relevant to
reliably detect seizure activity. The use of cEEG registrations and compute
interpretation had an impact on the clinical decision making in all four of the
patients who were monitored in the ICU.

The classification accuracy of the test set and the results of the real-time
pilot measurements are encouraging, but it is clear that an evaluation on a
larger group of EEGs is needed for additional testing and improvemengs. Th
addition of an alarm mechanism to the real-time monitor may also further
improve the clinical impact of the system. Integration with other clinical
measures such as blood pressure, temperature, intracranial pt&saear-
infrared spectroscopy, drug intake and vide€d®® can further contribute to
improved brain monitoring in the ICU, ultimately resulting in the realization
of a multidimensional monitoring systeth

The main focus of our study was to explore whether computer assisted EEG
diagnostics can assist in the visual interpretation by experienced electroe
cephalographers. We did not evaluate the reproducibility of the EEGfclass
cation, although this is an important issue. Since the system has been trained
by labeled EEG data from the same department, it cannot excluded that there
is a particular bias in the classification. Therefore, training and evaluating th
system using a larger dataset dfdient centres may improve the performance

of the classifier.

In closing, we remark that most existing real-time EEG systems focus on the
detection of seizures or one specific EEG pattern. Particularly in nepnates
several automatic seizure detection systems have been prdpdsét®e.3?



However, the EEG in neonates is not comparable to the EEG in adult patients.
What makes our system unique is that the classification of most common EEG
patterns encountered in the adult ICU is combined into one system. In addi-
tion, the classifier is patient independent and no patient specific boesdar
parameters have to be set.

In conclusion, we present a decision tree using eight gEEG featurkzssifg

the most common EEG patterns in the adult neurological ICU. This allows us
to differentiate between the most common EEG patterns: normal, iso-electric,
low voltage, burst suppression, focal offdse slowing, GPDs and seizure
activity. At present, we achieve a satisfying classification accuracyb®.8
The monitoring system allows real-time classification and subsequent inter-
pretation by ICU personnel. Ultimately, this can contribute to an increased
use of real-time EEG monitoring in ICU patients, thereby allowing early de-
tection of neurological derangements and introducing the potential for ear
interventions.
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Abstract

Introduction: EEG monitoring in patients treated with therapeutic hypothermia
after cardiac arrest may assist in early outcome prediction. Quantitatéée EE
(JEEG) analysis can reduce the time needed to review long-term EEG, and
makes the analysis more objective. In this study we evaluated the predictive
value of gEEG analysis for neurological outcome in postanoxic patients.
Methods: In total 109 patients admitted to the ICU for therapeutic hypother-
mia after cardiac arrest were included, divided over a training and aaést
Continuous EEG was recorded during the first 5 days or until ICU digeha
Neurological outcomes were based on the best achieved Cerelftaharce
Category (CPC) score within 6 months. Twenty-seven out of 56 patieBiis)(4

of the training set and 26 out of 53 patients (49%) of the test set achjpat
outcome (CPC 1-2). In all patients a 5 minute epoch was selected each hour,
and five gEEG features were extracted. We introduced the Cerelral/&g
Index (CRI), which combines these features into a single number.

Results: At 24 hours after cardiac arrest, a €RR9 was always associated
with poor neurological outcome, with a sensitivity of 0.55 (95% Confidence
interval (Cl): 0.32-0.76) at a specificity of 1.00 (ClI: 0.86—1.00) in thedes

This results in a positive predictive value (PPV) of 1.00 (CI: 0.73-1.00) a

a negative predictive value (NPV) of 0.71 (CI: 0.53-0.85). At the same time
point a CRE0.69 predicted good outcome, with a sensitivity of 0.25 (CI: 0.10—
0.14) at a specificity of 1.00 (CI: 0.85-1.00) in the test set, and a camegngy

NPV of 1.00 (CI: 0.54-1.00) and a PPV of 0.55 (CI: 0.38-0.70).

Conclusions: We introduced a combination of gEEG measures expressed in
single number, the CRI, which can assist in prediction of both poor and goo
outcome in postanoxic patients, within 24 hours after cardiac arrest.



Introduction

Early prognosis in patients with postanoxic encephalopathy after cardéest a

is limited, especially due to treatment with mild hypothermia and sedafion

In only 34-60% of patients treated with hypothermia after cardiac arrest,
consciousness will retuf®. Electroencephalography (EEG) monitoring may
assist in early prognosis®. However, analysis of long-term EEG registrations

is very time-consuming and can only be done by an experienced electroen-
cephalographéf-14 Furthermore, visual EEG interpretation will always be
partially subjectivé®14

Quantitative EEG (QEEG) analysis can reduce the time needed to review long-
term EEG, and makes the analysis more obje¢tivé. Additionally, QgEEG
analysis can be used to reveal and display trends in EEG patterns oger lon
time period$®. Thereby it can be used as a manner to study time constants of
improvement in the EEG. In a cohort of 30 patients Wennervirta et al. showe
that individual gEEG features such as the burst-suppression ratiegpense
entropy, and the state entropyfféred between good and poor outcome groups
during the first 24 hours after cardiac arf€stA response entropy 6f12.53

and a subband entropy efl1.84 at 24 hours after cardiac arrest both had a
sensitivity of 78% and a specificity of 81% for predicting poor neuroldgica
outcomé?®. These results are promising, and could possibly be improved by
using a combination of multiple gEEG features integrated as a single index.

In this study we analysed five gEEG features and combined these into the
Cerebral Recovery Index (CRI), which provides a single numberdatbe

used for prognostication in patients treated with mild hypothermia after cardiac
arrest.

Materials and Methods

Patients

From June 2010 to February 2013 we monitored all patients after catdiopu
monary resuscitation, who were admitted to the ICU of our hospital (Medisch
Spectrum Twente, Enschede, The Netherlands) for therapeutic leypoéh

A detailed description of patient inclusion criteria was already givén in
short, all adult patients (aged18 years), who were resuscitated after a cardiac
arrest, remained comatose, and were admitted to the intensive care unit (ICU
to receive therapeutic hypothermia (at’@3 maintained for 24 hours) were



included. Patients with additional neurological injuries were excluded. The
data of the first patients (from June 2010 to July 2011), which we alsh use
in our previous study on the evaluation of predictive value of visual aigly

of the EEG, were used as training data to define gEEG features and optimize
parameter settings. The EEG recordings of the patients included after July
2011 were used as test data, and therefore only used for evaluatiensti-
tutional Review Board of the Medisch Spectrum Twente waived the neaed fo
informed consent for EEG monitoring during ICU stay and for the follow-up
after 3 and 6 months by telephone. However, for additional electrogbgsio

cal and clinical evaluation after discharge from the ICU in the first 60 psje
local institutional review board approval and written informed consents we
obtained.

EEG recordings

EEG recordings were started as soon as possible after the patierval arri

the ICU and continued up to 5 days or until discharge from the ICU. For
practical reasons, EEG recordings were not started late at nightadingte
patients admitted to the ICU after 11 PM, the recordings were started the next
morning at 7 AM. Twenty-one silver-silver chloride cup electrodes wkxegal

on the scalp according to the international 10-20 system. Recordings were
made using a Neurocenter EEG recording system (Clinical Science Systems
Voorschoten, The Netherlands). All EEG analyses were perfornfitideo

EEG data played no role in actual prognostication of outcome or treatment
decisions. However, the treating physicians were not completely blinded to th
EEG to allow treatment of epileptiform discharges. Treatment of epileptiform
activity was left at the discretion of the treating physician. Generalized per
odic discharges were also interpreted as epileptiform activity, and tredtted
anti-epileptic drugs. However, no treatment protocol existed for treatment,
since evidence forfiect of treatment is lacking. Therefore, both the nature
and the intensity of treatmentftired among physicians. In general, only
moderate levels of anti-epileptic drugs were given, and treatment nexarae

an intensity to induce burst-suppression EEG and barbiturates wersatbt u

Selecting EEG epochs

EEG epochs of 5 minutes were automatically selected every hour during the
first 48 hours after resuscitation and every 2 hours during the renraohttee
registration. In this selection, the EEG epoch with the least number of agefac
was chosen, after applying an artefact detection algorithm. In this algorithm,



EEG data from 10 minutes before until 10 minutes after the selected time point
was assessed. The EEG data of these 20 minutes was divided into 3@ssecon
segments. For each segment a value for the amount of artefacts wasideter

by calculating the number of high voltage peaks (movement artefacts), the
power ratio between frequencies inside the EEG range and higheefreigs
(muscle activity), and the number of channels that contains zeros (kedtac
wires or loose electrodes). Finally, the ten consecutive segments with the
lowest summed artefact values were selected, resulting in a 5 minute epoch.
In EEG registrations with too many artefacts during the complete 20 minutes,
no epoch was selected for that selection moment.

Quantitative EEG features

First, all epochs were filtered by a zero-phase 6th order Butterwontthpaass
filter (0.5 to 30 Hz) and transformed to the source derivation. Subs#dguen
the qEEG analysis was performed. Five features were used: the,pbeer
Shannon entropy, the alpha to delta ratio, the regularity (a feature wimgdede

to distinguish burst-suppression patterns from continuous EEG paftants)
coherence in the delta band. These features were motivated by the criteria
which a neurologist evaluates during visual analysis of an EEG. Afteuled-

ing the values of the five gEEG features, all features were normalizeegbrtw

0 and 1 with a smooth exponential function, and combined into one overall
score, the Cerebral Recovery Index (CRI).

All gEEG features, except the feature for regularity of the amplitudegwer
first calculated per EEG channel and per 10 seconds segmenttegparal
subsequently averaged over time and over all channels. The reguésityd

was calculated per channel for the complete 5 minutes at once, and thren ave
aged over all EEG channels.

Power: To quantify the power of the EEG, the standard deviat®b) (of

the EEG was calculated. As the mean of the signal can be expected to be
negligibly small after filtering, the SD is equivalent to the mean power of the
signal.

Shannon Entropy: An analytical technique to quantify the irregularity of a
stochastic signal is entropy. Overall, entropy describes the complexity, or
unpredictability of a signal. In this study we used the Shannon entidgy) (



first defined by Shannon and Weaver as:

z

Hsh = = > p(x)Iog2p(x), (7.)

i=1

wherex; is the amplitude of the signal amu{x,) the probability of its occur-
rence in the signal segméfitt’). The probability density functiop(x;) was
estimated by using the histogram method where the amplitude range of the
signal was linearly divided into bins (from —2Q0/ to 200 nV, with a bin

width of 1uV.)

Alpha to delta ratio: The alpha to delta ratibB@R)131820was calculated

as the power ratio between the alpha (8—13 Hz) and delta frequency®hand

4 Hz). To calculate this power ratio, a power spectral density was estimated
using Welch’s averaged periodogram method using a Hamming window with
a length of 2 s resulting in a spectral density estimation with a resolution of 0.5
Hz.

Regularity: To separate burst-suppression patterns from continle@spat-
terns (with a regular, constant amplitude) we developed a feature to gvalua
the regularity of the amplitude of a signal. In Figure 7.1 we present two signals
as an example. Figure 7.1A shows a signal with a high variance in amplitude
and Figure 7.1B a signal with more regular amplitude. In this technique we
first squared the signal and applied a moving average filter with a window of
0.5 s to create a non-negative smooth signal. The window length of the moving
average was set at 0.5 s. A longer window would average outfiggetices in
activity between subsequent bursts and suppressions, while a shiortiemw
length would not average out the individual peaks within one burst. €subs
guently, we sorted the values of the smoothed signal in “descendingf’ orde
(see Figure 7.2). The normalized standard deviation of this sorted sigisal w
then calculated as a feature for regularREG in amplitude of the data:

| =, i2g()
REG= —%NZ o’ (7.2)

with N the length of the signal in samples apthe sorted signal. The nomina-

tor calculates the standard deviation of the sorted signal, which is normalized
in a range between 0 and 1 by the denominator. The REG value of a signal
with constant amplitude is 1, independent of the amplitude of the signal. A
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Figure 7.1: Example of two signals with ffierent variance in amplitude. The signal in A
shows two short periods with high amplitude on a zero background, tienea in amplitude
in this signal is relatively high, while the signal in B has a more regular ostearh amplitude.
The signal in A can be compared with an EEG showing a burst suppngsaitern, while the
signal in B can be compared with an EEG with continuous amplitude. This regsgd in the
regularity index (cf. Equation 7.2 and Figure 7.2).

signal with relatively low amplitude (suppression) that contains a shadder

of higher amplitude (burst) will have a value close to zero; if there are more
or longer bursts the REG value will increase. Two examples of this technique
applied on EEG data showing a burst-suppression pattern and a nor@al EE
pattern are given in Figure 7.2 A and B respectively. Note that the RE@ valu
for the burst-suppression EEG (Figure 7.2A) is lower than of the nororal ¢
tinuous EEG (Figure 7.2B), indicating that the burst suppression EE@ssho
more spread in amplitude.

Coherence in the delta band: To quantify EEG patterns with an abnormal high
synchronization level, the mean coheren€®H) in the delta band (0.5-4 Hz)
between all possible combinations of EEG channels was implemented. In the
calculation of the coherence we used a Hann window with a length of 4 s and
an overlap of 2 s.

Feature Combination
Finally, the five gEEG features were combined into a single number, the Cere-
bral Recovery Index (CRI). First the value of each qEEG feature neamal-
ized in the range from 0 to 1, with O corresponding to a pathological EEG
and 1 corresponding to a physiological EEG. These normalized qEE®ssco
(annotated with a hat) are schematically displayed in Figure 7.3 and exgpresse
as:

SD=1/(1+ e 26D-29), (7.3)
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Figure 7.2: Calculating the regularity of the amplitude (REG) in an EEG showing a burst
suppression pattern (A) and affdisely slowed pattern (B). In the top graphs, the raw EEG
is shown (black), together with the EEG after squaring and applying a maiarage filter
(with a window of 0.5 s) (blue). In the bottom graphs, the sigmé obtained after sorting
this smoothed signal in decreasing order. The calculated value forgbkarigy (REG) is the
normalized variance of this sorted sigmp{cf. Equation 7.2). REG is normalized from 0-1,
where a higher value corresponds to a signal with a more regular angpisuidlustrated.

ﬁs\h =1/1+ e_g(Hsh—Z.S))’ (7.4)
ADR = 1/(1 + e 10ADR-05)) (7.5)
REG= 1/(1 + e 10REC-065)) (7.6)

and
COH = 1/(1 + t0COH-045)) (7.7)
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Figure 7.3: Normalized qEEG scores. All five qEEG values are normalized usingoatsm
sigmoid function (Equations 7.3—7.7), resulting in score for each fegunnotated with a hat)
between 0 and 1.§D=standard deviatiorkls,=Shannon entropyADR=alpha to delta ratio,
REG=regularity, COH=coherence.)

The values for the parameters in these expressions were set aftéinipea-

tion of the data of the training set. We did this for each feature independently,
selecting the data that was most relevant for that specific feature. &,

for the REG feature we compared burst-suppression EEGs with nornzd EE
showing continuous activity, while for tfgDfeature we compared iso-electric
and low-amplitude EEGs with continuous EEGs.

As the power of an EEG signal is a requirement for a normal EEG - if there
is no power at all, the EEG is flat and all other features are useless - in the
combined score,§(\D) was multiplied with the mean of the other four qEEG
scores. However due to the sigmoid shape of the curvéTo(Equation 7.3,
Figure 7.3), the value of the CRI is independent for further changesvireip

once the power has reached a certain minimal threshold; above a mean ampli-
tude of 5uV the value of theS Dgoes to 1. The resulting expression for the



CRIis:
cRi sp| Hsh+ ADR+4§E\G+C/O\H} 7.8)
To evaluate the time dependency of the CRI, we introduce a "recovecy fun

tion”, R(t), expressed as:

R(t) = ao + arH(t - 6)(1 — e /), (7.9)

with H the Heaviside or step function. The constasmsanda;, delays and
time constant were estimated using the median values of the CRI, both for
patients with good and poor neurological outcome.

Outcome Assessment

Neurological outcome assessment was performed at 3 and 6 monthsaafter ¢
diac arrest during a personal meeting or based on a telephone call,aand w
always performed by the same author (MT-C). The primary outcome nmeasur
was the best score within 6 months on the five-point Glasgow-Pittsburgh CPC
scoregl. Outcome was dichotomized between “good” and “poor”. A good
outcome was defined as a CPC score of 1 or 2 (no or moderate neurblogica
disability), and a poor outcome as a CPC score of 3, 4, or 5 (severdlitjsab
comatose, or death).

Statistical Analysis

Collected baseline characteristics include age, sex, weight, locationddcar
arrest (in-hospital vs. out-of-hospital), cause of cardiac arrasdtjritial car-

diac rhythm. Also information about the administered sedative (propotbl an
midazolam) and analgesic (fentanyl and remifentanyl) drugs and their maxi-
mum dose within the first 24 hours were collected. Statistical analysis for the
variables that were categorical was performed using a Pearsonudresigst
when no subgroup had an expected count less than 5, else a Fislaet'sest

was performed. For continuous variables an indepentdtsdt was applied
after confirming that these variables were normally distributed.

At 12, 18, 24 and 36 hours after cardiac arrest, we determined theiadea

the curve (AUC) of the receiver operating characteristic (ROC) cubuar-
thermore we defined at each of these time points two thresholds for the CRI
score, one corresponding to a 100% specificity for predicting poapiagical
outcome and one corresponding to a 100% specificity for predicting gawd n
rological outcome. For each threshold we calculated the sensitivity, Sgcifi



positive predictive value (PPV) and negative predictive value (NBRQ,their
95% confidence intervals (ClI).

Results

In total 109 consecutive patients were included in the study. The firsa56 p
tients were used as the training set and the remainder 53 patients weredhclude
in the test set. In the training set, 27 out of the 56 patients (48%) had good
neurological outcome (best CPC scaf2 within 6 months). In the test set,

26 out of the 53 patients (49%) had good neurological outcome. Additional
patient information of the training set is giverfinTable 7.1 summarizes the
patient characteristics of the test set. Both in the training and test set,group
patients with good neurological outcome and patients with poor neurological
outcome were sedated at same dosage levels. However, in the test group,
patients with good neurological outcome received a slightly higher dose of
propofol in comparison to patients with poor neurological outcome (Tabje 7.1

Figures 7.4A and 7.4B show the median CRI values of patients with good and
poor neurological outcome and their corresponding ranges. Figuteshav

the results of the training set and figure Figure 7.4B for the test set. Irtteth
training and test set patients with good neurological outcome have arllovera
higher CRI than the group of patients with poor neurological outcome. We
obtained a reasonable fit of the mean CRI values using the recoventyofunc
given by Equation 7.9. Note that the largedtelience between the fitted re-
covery curves is present between 6 and 24 hours after cardiat. arhe time
constant is substantially larger in the patients with poor neurological outcome
(r=14.2 in the training set ant=20.2 hours in the test set) in comparison to
the patients with good neurological outcome=6.4 in the training set and
7=4.5 hours in the test set), indicating that the EEG of patients with good
neurological outcome shows a faster improvement.

Tables 7.2a and 7.2b show the results for predicting poor outcome at, 124 18
and 36 hours after cardiac arrest. Table 7.2A shows the results foathimgy

set and Table 7.2B for the test set. At 18 or 24 hours, the CRI perfoests b
At 24 hours after cardiac arrest, a CR).29 was always associated with poor
neurological outcome, with a sensitivity 0.55 (Cl: 0.32-0.76) at a specificity
of 1.00 (CI: 0.86-1.00) in the test set. This results in a PPV of 1.00 (CI-0.73
1.00) and a NPV of 0.71 (CI: 0.53-0.85). At the same time point a~ORI9

can be used for predicting good outcome, with a sensitivity of 0.25 (CI-0.10
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Figure 7.4: Values of the Cerebral Recovery Index (CRI) for the training (A) test (B)
set. The green and red dots are the median values for patients with ghpd@mneurological
outcome at each time point, the green and red areas are the corrigsoues. The grey area
represents the area where the green and red areas overlap. Theefiteery functionsR(t)
(Equation 7.9), are given as a solid line. Note that the largé&&rdhce between the fitted CRI
curves is present between 12 and 24 hours after cardiac arrest.



Table 7.1: Comparison of patient characteristics between the patients with goodogined
outcome and poor neurological outcome in the test set. Medication desgivan as the max-
imum drug dose during the first 24 hours. (CGRCxrebral Performance Category, €Bardiac
arrest)

Poor neurological Good neurological — p-
outcome (CPC 3-5) outcome (CPC 1-2) value

Number of patients 27 26 -
Number of male 19 (70%) 20 (77%) 0.59
Age (years) 63 (std 13) 58 (std 11) 0.14
(range: 27 to 82) (range: 35to 79)
Number of OHCA 23 (85%) 23 (89%) 1.00
Initial Rhythm 0.00
VF 8 (30%) 23 (89%)
Asystole 14 (52%) 0 (0%)
Bradycardia 1 (4%) 0 (0%)
Unknown 4 (15%) 3 (12%)
Presumed cause of CA 0.57
Cardiac 17 (63%) 17 (65%)
Other origin 6 (22%) 3 (12%)
Unknown 4 (15%) 6 (23%)
Patients sedated with propofol 27 (100%) 26 (100%) -
Propofol dose (myykg) 2.8 (std 1.0) 3.4 (std 1.0) 0.03
(range: 0.9t04.8) (range: 1.3t05.4)
Patients sedated with midazolam 8 (30%) 6 (23%) 0.59
Midazolam dosey(g/h/kg) 80 (std 65) 73 (std 35) 0.84
(range: 30to 214) (range: 33 to 125)
Patients treated with fentanyl 18 (67%) 19 (73%) 0.61
Fentanyl doseug/h/kg) 1.5 (std 0.8) 1.9 (std 0.7) 0.13
(range: 0.6t0 3.6) (range: 0.9t0 2.7)
Patients treated with remifentanil 11 (41%) 7 (27%) 0.29
Remifentanil doseug/hvkg) 4.0 (std 2.6) 5.5 (std 3.0) 0.28

(range: 1.0t0 7.0)  (range: 3to 11)

0.14) at a specificity of 1.00 (CI: 0.85—-1.00) in the test set, and a camelsug
NPV of 1.00 (CI: 0.54-1.00) and a PPV of 0.55 (CI: 0.38-0.70).

Discussion

There is growing evidence that EEG monitoring can play a significant role in
the prediction of neurological outcome in patients treated with hypothermia
after cardiac arre8t®. In addition to prognostic parameters based on visual
interpretation of the EEG, we introduce the “Cerebral Recovery In¢eR1)

based on five qEEG features that grades the EEG patterns as observed



Table 7.2: Sensitivity, specificity, positive predictive value (PPV), negative jtad value (NPV), and area under the receiver operating
characteristic curve (AUC) for predicting neurological outcome in thiaitrg set (A) and test set (B) atftierent time points after cardiac arrest.
At each time points we selected two thresholds for the Cerebral Recthaey (CRI), one corresponding to a 100% specificity for predicting
poor neurological outcome and one corresponding to a 100% spedificityedicting good neurological outcome. In addition the 95% confidenc
intervals (CI) were given.

A: Training Set.

Time AUC CRI Predicting Sensitivity (Cl) Specificity (CI) PPV (CI) NPV (CI
12h 0.83 <0.04 Pooroutcome 0.27(0.11-0.50) 1.00(0.86-1.00) 1.B@{Q.00) 0.60 (0.43-0.75)
>0.90 Good outcome 0.13(0.03-0.32) 1.00(0.85-1.00) 1.@9{0.00) 0.51 (0.35-0.67)
18 h 0.69 <0.19 Pooroutcome 0.28(0.10-0.53) 1.00(0.85-1.00) 1.@@{Q.00) 0.63(0.45-0.79)
>0.91 Good outcome 0.05 (0.00-0.22) 1.00 (0.81-1.00) 1.00 (-) 0.46 (0.30-0.63)
24 h 0.87 <0.35 Pooroutcome 0.45(0.23-0.68) 1.00(0.85-1.00) 1.@8{Q.00) 0.68 (0.49-0.83)
>0.61 Good outcome 0.57 (0.35-0.77) 1.00(0.83-1.00) 1.034Q.00) 0.67 (0.47-0.83)
36h 0.74 <0.32 Pooroutcome 0.28(0.10-0.53) 1.00(0.86-1.00) 1.@@{Q.00) 0.65 (0.75-1.00)
>0.91 Good outcome 0.04 (0.00-0.21) 1.00 (0.81-1.00) 1.00 (-) 0.44 (0.28-0.60)
B: Test Set.
Time AUC CRI Predicting Sensitivity (CI)  Specificity (Cl) PPV (CI) NPV (CI
12h 0.74 <0.02 Pooroutcome 0.13(0.02-0.40) 1.00(0.83-1.00) 1.084Q.00) 0.60 (0.42-0.77)
>1.00 Good outcome 0.00 (0.00-0.17) 1.00 (0.78-1.00) - 0.£28%{0.60)
18 h 0.94 <0.18 Pooroutcome 0.59(0.33-0.82) 1.00 (0.85-1.00) 0.76 (0.56-0.90)
>0.57 Good outcome 0.64 (0.41-0.83) 1.00 (0.80-1.00) 0.68 (0.46-0.85)
24 h 0.87 <0.29 Pooroutcome 0.55(0.32-0.76) 1.00 (0.86-1.00) 0.71 (0.53-0.85)
>0.69 Good outcome 0.25(0.10-0.47) 1.00 (0.85-1.00) 0.55 (0.38-0.70)
36h 0.84 <0.22 Pooroutcome 0.30(0.12-0.54) 1.00 (0.86-1.00) 0.63 (0.46-0.78)
>1.00 Good outcome 0.00 (0.00-0.14) 1.00 (0.83-1.00) - 0.80{0.61)




patients after cardiac arrest. This index may assist in the prediction of neu-
rological outcome after cardiac arrest. The advantage of a combine@ qEE
feature is that it is very simple to use and trends in long term EEG recordings
can easily be studied, while it still covers more than one aspect of the EEG.
We evaluated the CRI in a training group of 56 patients and a test group of 53
patients treated with hypothermia at the ICU after cardiac arrest.

Although many features can be extracted from EEG Ha!822 only five

were used in this study. The selection of features was motivated by the EEG
characteristics that neurophysiologists evaluate in visual interpretatioBGf

in patients after cardiac arrest. Subsequently, the features were cahittime

a single number: the Cerebral Recovery Index (CRI). For a profzuation

of the CRI, we used an independent training and test set.

CRI scores are higher in patients with good outcome in comparison to pa-
tients with poor outcome and can be used to divide patients into three groups.
The first group (green area in Figure 7.4) only includes patients with good
neurological outcome: at 24 hours after cardiac arrest, 25% of thentsatie
with good neurological outcome are in this group. The second group (red
area in Figure 7.4) only includes patients with poor neurological outcome, at
24 hours after cardiac arrest, this group includes around 55% of taints

with poor neurological outcome. The last group (the grey area) in Figdde
includes patients with good as well as with poor neurological outcome. The
first and second group are of the most interest, since outcome prediction is
100% reliable in these patients.

The median values of the CRI of both groups of patients increased over time.
However, the time constant in the recovery functi{t) of patients with good
neurological outcome is much smaller than in patients with poor neurological
outcome. This implies that the EEGs of patients with good neurological out-
come improve faster than those of patients with poor outcome. We also showed
that the CRI at 18 and 24 hours after cardiac arrest has a highemqstig
value in comparison to the values at 12 or 36 hours after cardiac artestsT
similar to the time course reported in our previous study using visual anlyses
Therefore, it is important to start the EEG registration within the first 24our
after cardiac arrest for maximal diagnostic yield. The CRI threshold fer th
prediction of poor outcome with a 100% specificity increases from a value of
0.02 to 0.29 in the period 12-24 hours. This reflects the evolution in EEG



patterns, in agreement with visual inspection. For instance, an iso-electric
EEG in the first hours after cardiac arrest is observed both in patientsawith
good and poor outconié. Such an iso-electric EEG will have a very low
CRI score of almost zero, since the feature for the amplitude is multiplied with
the summed values of the other four features. In all patients with good neu-
rological outcome, iso-electric EEG patterns, if initially present, will evolve
within 24 hours to a burst-suppression or a continuous EEG pAtt@imis is
reflected by a CRI score of ¢,0.69 at 24 hours. The interpretation oBGef&
prognostication, either quantitative with the CRI or with visual interpretation,
must, therefore, be related to the time since cardiac arrest. We used 5 minute
epochs of EEG with the least amount of artefacts every hour or every two
hours to limit the influence of artefacts on the CRI score. As the EEG patterns
of patients after cardiac arrest in general evolve over Kourss interval is
suficient to track relevant changes.

The thresholds for the CRI slightly varied between the training and test set.
For predicting poor outcome at 24 hours the threshold decreased 851
0.29, while for predicting good outcome at 24 hours the threshold inatease
from 0.61 to 0.69. A larger test set is necessary to evaluate the thresholds
of the CRI before application in the clinical setting. Additional improvement
might be the reduction of the irregularity in the border between the grey and
green area (representing a 100% specificity for predicting good oujdome
Figure 4. Since changes in the EEG typically occur slowly and continuously
over time, this border should be smoother. The peaks in the border betvaeen
green and grey area are therefore non-physiological. At some poititaén

the green and grey area even completely overlap. This was causedhoy hig
amplitude and high frequency muscle artefacts, resulting in erroneously hig
CRI values in some patients with poor outcome, illustrating that in some pa-
tients our automated selection of artifact free EEG epochs was fimisuntly
accurate.

Our method is completely automated, including the selection artefact free data.
However, the automatic selection of artefact free data is not perfectAyet.
expert is needed to verify that the selected EEG epoch is indeed aftefact

to assure that the CRI value is reliable. Therefore, quantitative EEGsasaly
can reduce the time needed to review long-term EEG and make interpretation
more objective. However, it is primarily aimed to assist in the interpretation
instead of replacing the visual analysis of the EEG by an expert neisbtlog



The EEG registrations were accessible for the treating physicians attthie IC
allow treatment of epileptiform discharges. This could potentially have influ-
enced decision making. However, the local protocols about patient tnetgme
were strictly followed. As presently the EEG of the first 24 hours is not in-
cluded in the Dutch guidelines, these findings were never used in the daecisio
making. An absent SSEP during normothermia was a reason to stop treatment
according to current guidelines. Other findings to stop treatment included
absence of both pupillary light and cornea reflexes at day three aifteiac
arrest, or an iso-electric or low-voltage EEG at day three. In patients with a
motor score>4, or in patients that showed clinical improvement, treatment
was never stopped. The CRI values were calculaf@ohe after inclusion of

all patients, and were therefore not available for the treating physicietmes.
likelihood of a self-fulfilling prophecy is thus very small. Also, the dichotomi-
sation of continuous variables using a threshold has its limitattomslarger

test set is necessary to evaluate the thresholds of the CRI before ipplina

a clinical setting. Evaluation in a larger population may also result in change of
thresholds, which could make it less suitable for decisions that requifs 100
accuracy. In clinical practise, therefore, in the interpretation of thetlo&dlif-
ference of the index from threshold should also be taken into accounthén
limitation might be that all patients were sedated during the hypothermic phase
with propofol and in some cases additionally with midazolam in a low dose,
which could have influenced the EEG registrations. However, both in this an
our previous stud§, we showed that at group level patients with good neu-
rological outcome and patients with poor neurological outcome were sedated
at same dosage levels. In the test group described in this study, patients with
good neurological outcome even received a slightly higher dose obfwop

in comparison to patients with poor neurological outcome. Although propofol
may have a neuroprotectivéfect, this has only been shown in in vitro and

in vivo established experimental models of acute cerebral isciéfmiaNo
clinical data exist that establish neuroprotection by propofol in hurfaffs

In our study, the mean fierence in propofol dosage between the group of poor
and good neurological outcome is small. The main reason for therelice

in propofol dosage used is probably that the postanoxic encephajoipath
patients with good neurological outcome was less severe, resulting in more
muscle activity. Therefore, a higher dosage of propofol was netm iohit
shivering. This might indicate that the temperature regulation is iésstad

in patients with good neurological outcofe Furthermore the improvements

in EEG patterns were already visible within the first 24 hours after cardiac



arrest, while patients were still treated with hypothermia and received gedati
drugs. Therefore, it is very unlikely that the changes in EEG can beaiexgl
by the use of sedative drugs.

Conclusions

We introduce the Cerebral Recovery Index (CRI) to quantify andegcadtin-
uous EEG data of patients after cardiac arrest. The CRI can assistiotjme

of both poor and good neurological outcome within 24 hours after cardiac
arrest.
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Abstract

Objective: Generalized periodic discharges (GPDs) can be observbe
electroencephalogram (EEG) of patients after acute cerebral ischechiaa

flect pathological neuronal synchronization. Whether GPDs reptrestal
activity, which can be treated with anti-epileptic drugs, or severe ischemic
damage, in which treatment is futile, is unknown. We hypothesize that GPDs
result from selective ischemic damage of glutamatergic synapses, wieich ar
known to be relatively vulnerable tdfects of ischemia.

Methods: We employed a macroscopic model of cortical dynamics in which
we increasingly eliminated glutamatergic synapses. We compared the output
of the model with clinical EEG recordings in patients showing GPDs after
cardiac arrest.

Results: Selective elimination of glutamatergic synapses from pyramidal cells
to inhibitory interneurons led to simulated GPDs whose waveshape and fre-
guency matched those of patients showing GPDs after cardiac arrese Mer
reduction of glutamatergic synapses between pyramidal cells themselves did
not result in GPDs.

Conclusion: Selective ischemic damage of glutamatergic synapses on in-
hibitory cortical interneurons leads to the generation of ischemia induced
GPDs. Disinhibition of cortical pyramidal neurons is a candidate mechanism.
Significance: This study increases the insight in the pathophysiologicdl-mec
anisms underlying the generation of GPDs after acute cerebral ischemia.



Introduction

Generalized period discharges (GPDs) are frequently encounteried eélec-
troencephalography (EEG) monitoring in comatose patients after cardiac ar
rest. GPDs are defined as synchronous bihemispheric, repetitiveadjssh

of similar morphology with quantifiable, nearly regular, interdischarge inter-
vals'™% GPDs reflect pathological neuronal synchronization and are often
associated with seizure activity. However, it is unclear whether GPDs af-
ter ischemia are a true form of ictal activit§. In some literature prolonged
periods £30 min) of GPDs in comatose patient are interpreted as a form of
(non-convulsive) status epilepticti& No standard of care exists in these pa-
tients, since it is unknown whether early and aggressive treatment otasena
patients showing GPDs after ischemia improves outcohié. Most of these
patients have poor outcome, with death in most cases and persistent vegetati
state in few survivor§®. GPDs therefore might rather be an expression of
severe (often irreversible) ischemic damage, in which treatment is%ife.
However, some examples of patients with good outcome after treatment with
anti-epileptic drugs exidt. Better understanding of the pathophysiological
processes leading to ischemia induced GPDs may clarify why some patients
respond to treatment, but most of them do not.

Failure of synaptic transmission is an early consequence of cerelhrahisz

and is reflected by changes in the EEG® Although initially reversible, irre-
versible synaptic damage may occur if blood flow is not restored prodfptly
Experimental studies in rat hippocampal slices showed that glutamatergic
synapses are more vulnerable to ischemia than GABA&tgithis selective
ischemic vulnerability of glutamatergic synapses to inhibitory, GABAergic,
interneurons first leads to elimination of inhibitory cortical inpat®

Here we study thefkect of selective ischemic synaptic damage on EEG pat-
terns, with an established macroscopic computational m&d@he model's
output is the membrane potential of cortical pyramidal neurons, avemaged

a macrocolumn. Thereby, the model provides a natural link with the EEG,
which reflects currents within pyramidal apical dendrites, averagedsovall
pieces of cortical tissuté=23 This model has contributed to the understanding
of diverse EEG phenomena, such as spontaneous rhythms, epilepti@sgeiz
and anesthesia-induced chartfe®’



We hypothesize that selective ischemic damage of glutamatergic synaptic input
to inhibitory interneurons results in pathological neuronal synchronizatio
reflected as GPDs on the EEG. To test this hypothesis we study increasing
elimination of these connections on simulated EEG patterns in our compu-
tational model. We discuss the implications of our results with regard to the
pathophysiological mechanism leading to GPDs, including the presufiieed e

of treatment with anti-epileptic drugs.

Methods

Clinical data

We selected EEG recordings showing GPDs from a previously publisited p
spective cohort study on the prognostic value of continuous EEG raiijists

in 56 comatose patients treated with hypothermia after acute global cerebral
ischemia resulting from cardiac arr&st

EEGs were measured in one of the two intensive care units of the Medisch
Spectrum Twente hospital (Enschede, The Netherlands) using 21-silver
silverchloride cup electrodes placed on the scalp according to the interalatio
10-20 system. Recordings were made using a Neurocenter EEG recordin
system (Clinical Science Systems, Voorschoten, The Netherlands)gAdlls

were filtered by a zero-phase 6th order Butterworth bandpass filtarGrb to

30 Hz. EEGs were independently described by two authors (MT-C arig) Mv

In case of disagreement, the final classification was decided by carssens
GPDs were defined as any pattern of synchronous, bilateral, repatisve
charges of similar morphology with nearly regular interdischarge intet{als
Besides EEG, in all patients daily somatosensory evoked potential (SSEP)
recordings were made after bilateral electrical stimulation of median nerve
using a Nicolet Bravo system (Viasys, Houten, The Netherlands).

Modeling cortical dynamics and synaptic failure

We employ the computational model of cerebral dynamics described in Liley
et al?%. The model comprises the two major neuron types found in cortical
tissue: pyramidal neurons and inhibitory interneurons. Both neurorstype
receive input via intra-cortical synaptic projections as well as nogiipe
excitatory input from regions not explicitly incorporated into the model, such
as the thalamus. This synaptic organization is illustrated in Figure 8.1(a) and
(b). Pyramidal neurons excite both themselves and inhibitory interneurons
through glutamate-mediated synapses. Interneurons inhibit both themselves



Cortical circuitry Meanfield model

Neuron types
A Pyramidal
© Inhibitory

\ Synaptic connections
\ === pyramidal -> pyramidal
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= afferents

Figure 8.1: Structure of the cortical meanfield model. A, The model comprisesged and
inhibitory neurons with their respective local synaptic projections, asagatalamic fierents.
B, The meanfield model reduces the microscopic cortical circuitry tabtes averaged over a
macrocolumn, resulting in mean neuron types and mean synaptic progctio

and pyramidal neurons through GABA-mediated synapses. The EE@I sign
is modeled by the mean membrane potential of the pyramidal neurons, which
are known to be approximately proportional to each otheAt baseline, we
choose the model parameters as in Liley etafor which the simulated EEG
displays alpha oscillations. The model equations and baseline parameters ar
given in Appendix A.

To model ischemia-induced glutamatergic synaptic damage, we increasingly
reduced the number of functioning glutamatergic synapses. These excita-
tory glutamatergic synapses connect the pyramidal cells with the inhibitory
interneurons as well as with the excitatory pyramidal cells themselves. A
differential vulnerability between these two collections of synapses is incorpo-
rated into the model by independently reducing the number of synapses fro
excitatory pyramidal cells to inhibitory interneurordg() and the number of
synapses between excitatory pyramidal céls). The simulated EEG signals
were classified into normal activity, GPDs or low voltage. In this classification
of simulated EEG data, GPDs were defined similar as for the clinical regis-
trations, with an additional requirement of an amplitude above 10 mV. The
simulated EEG was classified as low voltage when the complete signal was
below 0.25 mV. We visually compared the simulated EEGs with the clinical
EEGs with regard to waveshape (duration and steepness) and fegquen
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Figure 8.2: Generalized periodic discharges measured in eight comatose patiemtsfier
acute global cerebral ischemia due to cardiac arrest (left) with qumeking power spectra
(right). The dominant frequency ranges from 1 to 3 Hz.

To test the stability of our results we varied three of the other parameters in the
model and studied thefect on our results. We varied the standard deviation
of non-specific fluctuations to excitatory cells,ﬁ’@)_in a range of 90-110% of

the original value. The spike threshold&¢™® V%) were varied in a range

of 95-105% of their original values.

Results

Clinical data

GPDs were seen in eight patients (14%, Figure 8.2). In all patients the early
cortical (N20) SSEP response was preserved.

Model

The model generates an alpha rhythm when all synapses are intace(8igu

If Neeis kept unchanged at 100%, a decreasdpto 96—-63% results in GPDs

in the simulated EEGs. LoweNg; results in GPDs with a higher frequency.
ReducingNg; below 63% rapidly results in complete depression of simulated
cortical activity. Mere reduction dflee does not result in GPDs.

A 2D diagram wereNg; is varied along thex-axis andNee is varied along the
y-axis is presented in Figure 8.4. This shows that the simulated EEG pattern is
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Figure 8.3: Examples of simulated EEG patterns obtained after gradually reducingrthieen
of glutamatergic synapses from pyramidal cells to inhibitory interneu(dls. All other
parameters, including the number of glutamatergic synapses betwesmigsl cells Nee),
were un#fected. 1fN,;=100%, the model shows alpha activity (top). If 63%<96%, the
model shows GPDs. If this number is further reduced, the activity kapgduces to a very low
amplitude signal (bottom).

dependent on the ratio betwelg andNee, Where GPDs, can only be present
if Ngj is lower (more &ected) tharNee

Simulated and clinical GPDs show similar sharp periodic discharges with
faster, low-amplitude activity in between (Figure 8.5). The power speétra o

both signals have similar peak frequencies, with a dominant frequency of 1
3 Hz. However, the clinical EEG signals with GPDs show more variability of

peaks and have less sharp negative deflections than the simulated ones.

Variation of the non-specific fluctuations to excitatory cet8dj in a range of
90-110% of the original value did not have arfieet on the results. Variation

of the spike thresholdsvgP*® and pr'ke) in a range of 95-105% of their
original values caused a shift in the borders of Figure 8.4 between ¢las ar
corresponding to GPDs, normal EEG and low amplitude EEG. However the
same patterns were still seen.

Dynamical systems theory allows a characterization of the type of activity in
each of the EEG regimes observed in Figure 8.4, as well as of the typasiftra
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Figure 8.4: Diagram of simulated EEG patterns obtained after gradually reducing the nu
ber of glutamatergic synapses from pyramidal cells to interneurdgy &nd the number of
glutamatergic synapses between pyramidal céllg)( Note that it must hold thallej<Nee to
generate GPDs (red area). A further decreasde.jfeads to the generation of low voltage EEG
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Figure 8.5: Top: EEG recording from a patient after cardiac arrest showing rgéned
periodic discharges (GPDs). Bottom: simulated EEG showing GPDs. Isithiglation the
number of synapses from pyramidal cells to interneurdig (vas reduced to 90%, while the
number of synapses between pyramidal céllg)(was 100%.

tions through which the cortical column switches between these redtrires
Although a formal mathematical analysis is outside the scope of the present
study, we provide an intuitive description obtained using numerical simula-
tions of the model equations. Both the baseline (green area) and the low-
voltage EEG (blue area) correspond to spontaneous fluctuationdaasia-

ble equilibrium voltage. This means that the EEG activity in these regimes



is not intrinsically generated within the cortical column, but is driven by
stochastic subcortical activity impinging on cortical pyramidal neurons (se
Figure 8.1). However, while in baseline EEG, these fluctuations havera cha
acteristic frequency and correspond to physiological alpha actiyitize low-
voltage fluctuations are absent of oscillations, indicating pathologicaltgictiv
The transition from low-voltage EEG to GPDs (red area) corresponds to a
subcritical Hopf bifurcation, meaning that GPDs arise suddenly out dbtire
voltage activity (see Figure 8.3, fifth and sixth row). In contrast, in baselin
EEG and in the neighborhood of the GPD regime, spontaneously occurring
GPDs can be observed (see Figure 8.3, second and third row), indicatin
bistable dynamics. The transition from baseline EEG to GPDs corresponds
to a saddle-node bifurcation after which GPDs coexist with small-amplitude
limit-cycles in the alpha frequency range. While clearly visible in the second
trace of Figure 8.3, these alpha oscillations are barely observable in the GP
regime since their amplitude is about 20 times smaller than the amplitude of
the GPDs. Interestingly, in the EEG traces of some patients, small-amplitude
alpha oscillations can indeed be observed (see Figure 8.2(a) and (f)).

Pathophysiological mechanisms

In this section we describe the electrophysiological mechanisms that are sug
gested by the model to underlie the generation of ischemia-induced GPPs. Fig
ure 8.6(a) shows the average membrane voltage of the population of pgtamid
neurons during one cycle of the GPDs. To get a clear view of the dynawecs
also plotted the currents entering the population of pyramidal neuronsifSpe
ically, we show the passive membrane current (green line), the neptgyna
current (blue line), and the total current (red line) of this populatiorteNwat

the net synaptic current is comprised of the current due to axonalctimje

from the inhibitory population and from the pyramidal population itself. In
this simulation, we set thefferent inputs to the cortical column to zero, so
the total current is the sum of the membrane currents and synaptic currents
only. A first observation is that GPDs can be generated within corticalktissu
even in the absence of non-specifiteaents. In particular, since the dynamics

of the pyramidal voltage is not driven byfarent fluctuations, GPDs are self-
sustained and autonomously generated within local cortical tissue.

Figure 8.6(b) schematically depicts the chain of events taking place in the
modeled cortical column during one cycle of the GPDs. Starting at the rest-
ing membrane voltage, the loss of excitation of cortical interneurons due to
selective ischemia-induced synaptic failure leads to disinhibition of pyramidal
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Figure 8.6: Putative physiological mechanisms underlying the generation of iscHadhiaed
GPDs. A, Mean membrane voltage of the pyramidal population (black kioggther with the
intrinsic (green line), synaptic (blue line), and total current (red lingyiag at the cell bodies
during one period of the GPDs. In the simulations we used the baselimagi@rasalues except
we set the fierent inputs to the cortical column to zerm{:pni:agk:ai’;:O). Since these
parameter changes shifted the threshold for GPDs generationNg@r86% toNei~105%, we
setN=100%. B, Chain of events taking place in the modeled cortical column dariagycle
of the GPDs.
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neurons and therefore to higher excitation of interneurons. Howsirere
GABAergic synapses act faster than glutamatergic (or AMPAergic)ses

this initially results in a gradual depolarization of the pyramidal neurons (I).
When the depolarization is large enough, the non-linear activation piegper

of the pyramidal neurons lead to pathological self-excitation (ll), regultin
excessive firing-rates (ll1). This is reflected in the membrane voltagetigh
peak. Due to a changing balance between excitation and inhibition of the
pyramidal neurons (1V), which can be seen by the steep decreasemimg
synaptic current, the pyramidal neurons are rapidly hyperpolarizgdyMch
leads to the near absence of firing in the cortical column. This is reflected in th
pyramidal membrane voltage by a deep trough, close to the reversal plotentia
of chloride, which is about —90 mV. Since inhibition has now woff) the
passive membrane current leads to a gradual repolarization of the mreanbra
potential (V1) until it reaches the resting membrane voltage from where the
cycle repeats itself.



Discussion

In this meanfield model of cortical dynamics we show that selective reduction
of excitatory (glutamatergic) input to inhibitory cortical interneurons leads to
GPDs. The frequencies and shapes of the waveform of the simulated GPD
patterns qualitatively matched those of GPDs in patients after acute cerebral
ischemia. Further reduction of the number of glutamatergic synapses to in-
hibitory interneurons rapidly resulted in low-voltage EEGs, which are-regu
larly encountered in these patieffts334 Mere reduction of glutamatergic
synapses to excitatory pyramidal cells did not result in GPDs.

Our findings support the hypothesis that GPDs after cerebral ischenyia ma
result from selective ischemic damage of excitatory synapses on inhibitory
interneurons. The modeling carried out in this study suggests that this selec
tive synaptic failure leads to the emergence of GPDs via a disinhibition of
pyramidal neurons. This finding that networks with weakened or retlexe
citatory synapses can lead to epileptiform activity was described préyious

a computational model and confirmed in an experimental study in neocortical
slices of micé®. This idea of reduction of excitatory activity as a possible
pathway for epileptiform activity is in contrast with the general thought that
epileptiform activity is caused by an increased excitation or decreased inh
bition. The notion of excitation as a remedy against epileptiform activity has
been supported by a case report on an 11-year old patient with idiophtlie
hood occipital epilepsy of Gastaut. In this patient various additional stimuli
suppressed epileptiform discharg®s

High ischemic vulnerability of glutamatergic relative to GABAergic synapses
has been demonstrated previously in vitro: in rat hippocampal slicesjaanox
affected evoked excitatory more than inhibitory postsynaptic curt@hts?
Even more specifically, anoxia particularlyfected excitatory input to in-
hibitory cortical interneurons, leading to elimination of inhibitory cortical
input!’. However, this study was performed in slices of the CA1 region of
rat hippocampus. Whether this also applies to the interneurons in the cortex
is unknown. Moreover there are several types of cortical intermesuvwath
different types of synaptic connections. Therefore, our model repirese
simplification of only part of the complex network dynamics in the cortex
presumably playing a role in the generation of GPDs.

As reduced glutamatergic input to inhibitory interneurons results in an lbvera
increase in excitation of cortical networks, the proposed mechanisnestsgg



that the network mechanisms underlying the generation of GPDs are similar
to those involved in the generation of certain types of seizure activity. This is
supported by the strong association between GPDs and non-conadiiuee
activity: in more than 25% of patients with GPDs, non-convulsive seizures o
status epilepticus is diagnosed

GPDs are not only observed in patients after cerebral ischemia. OthéF co
tions include acute brain injury, acute systemic illness, metabolic disorders and
epilepsy?’. Itis unclear, if selective synaptic failure is present in these patients
too. However, in these conditions mitochondrial function is supposed to be
affected’38 and selective synaptic dysfunction of glutamatergic synapses due
to energy depletion is then indeed a candidate mechanism.

The meanfield model used in this study provides a direct link with the EEG.
In our study, the frequency and shape of GPD waveforms were quadliati
similar to those from patients after cardiac arrest. However, there were so
morphological diferences in the time-series. A partial explanation could be a
lack of spatial conductionfiects in the model’s time-seri€&3®, which unfor-
tunately can not be studied in this simplified meanfield model. Investigation
of this issue requires the use of the full spatio-temporal model in combination
with a forward model of the EE®. Second, a global parameter search for
GPDs within the currently used model could lead to GPDs with varying wave-
forms. Such a search has been performed using the full spatio-tempadtel

in the context of modeling theffect of anesthetic agerits

In patients after cardiac arrest GPDs are typically observed over jede

of the cortex and are bilateral synchrondt’s One of the limitations of this
model is that we cannot explain this aspect of GPDs. To study GPDsleztor
from different electrodes, the use of a full spatio-temporal model of the hu-
man cortex is needé&*142 Alternatively, synchronization between GPDs
recorded from various cortical regions could be mediated through thatamo
tical feedback loops, which are known to be involved in the generationtbf b
physiological and pathological rhythms in the br&iand could be studied in

a thalamocortical modét. The contribution of such a thalamocortical loop

in the synchronization of GPDs indeed remains possible as in our study all
eight patients showing GPDs had preserved early cortical SSEP s&spon
suggesting that the thalamocortical loop in these patients was still, at least
partially, intact®. However, the meanfield model we use does not contain



such a thalamocortical loop. Therefore tHeeet of the thalamocortical loop
on synchronization of GPDs cannot be studied using this model.

Depression of glutamatergic synapses may afferathe early cortical SSEP
response: the N20 is generated in the primary somatosensory ¥dttexd

its presence depends on an intact functioning of the thalamocortical gluta-
matergic synapses on pyramidal cells in ared>3# Most likely, however,
these synapses are relatively resistant to hypoxic incidents as in sonmegatie
preserved early SSEPs were recorded while the EEG was essentialgcisoe
tric*®. Our current clinical data support the hypothesis that the glutamatergic
thalamocortical synapses are more resistant to hypoxic incidents than the in-
tracortical glutamatergic synapsese{), as in all our patients SSEPs (N20)
were preserved, as well. However, to simulate changes in morphology of
the early (N20) or latex20 ms) SSEP components, would require further
detailed modeling of cortical architecture, including theatiential functional
dependence of relevant synapses on ATP depletion. This falls outeidedpe

of the current contribution.

Ischemic synaptic damage is initially located presynaptically and is associ-
ated with impaired transmitter reled$é®. Post-synaptic receptors are still
functioning at that time. This explains why treatment with anti-epileptic drugs
can result in a suppression of GPDs. If the presynaptic damage isrgitdee
GPDs may recur after withdrawal of treatment, which is indeed often obderv

In conclusion, after cerebral ischemia, GPDs probably result fromihige-
lective synaptic damage of glutamatergic synapses of excitatory pyramidal
cells on inhibitory cortical interneurons. Disinhibition of cortical pyramidal
neurons is a likely mechanism. Since this selective damage is likely irre-
versible, it may explain why treatment of GPDs with anti-epileptic drugs ap-
pears futile in most patients.
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Appendix A: Model equations and baseline values

In this section we give a short mathematical description of the computational
model of localized cortical dynamics employed in this sttfdyrhe model de-
scribes the dynamics of the average membrane potentials of a cortical macro-
column comprised of pyramidal neurons and interneurons. Below, theemdic

e andi refer to pyramidal- and interneurons, respectively. The membrane
potentials are denoted Byk(t) for k=e,i. Their dynamics are governed by

the following set of diferential equations

dV,
Ted_te :Vgest_ Ve(t) + \PiMPAIee(t) + \PEABAhe(t) + ‘PzMPAlne(t)’
(8.A.1)
dv; | | |
T d—tIZVirESt_ Vi(t) + \Pi’-\MPA lei(t) + \PIGABAIii ®+ \PIAMPAIni(t)’
(8.A.2)

where 7 and V|, respectively, denote the membrane time-constants and
resting-potentials anlg, is proportional to the current flowing into populatibn
due to activity of populatiok. The currents$,e andl,; model the &erent non-
specific input to the cortical column and are modeled as uncorrelated white-
noise processes with mean valyms and p,; and standard-deviationsh, and
P

O-ni'
The currentdy, are given by

la(t) = heasa ® NiSk(Vk(1)), (8.A.3)

where
heaea(t) = tHeasaYGABA €XP(L1- YGABAL) (8.A.4)

is the response function of GABAergic receptors located on the dendrites
of neurons within populatioh, which has rate-constanisaga and dficacy
Hcasa and similarly for AMPAergic responses. The parameiigrdenotes

the number of synaptic contacts on populaticdinom axonal projections of
populationk. The functionSi relates the membrane potential of population

to its firing-rate and is given by

Qe

1+ e VNP

Sk(Vk) = (8.A.5)



Table 8.A.1: Model parameters, their symbols, and baseline values. The kdefers to
neural population of typk=e, i.

Parameter Symbol Baseline value
Maximum spike-rate Qpax 500 s*
Spike-thresholds vPke -50 mV
Standard deviation of spike-thresholds o 5mVv

Synaptic #icacies Hcaga, Hamea  0.71 mV
Reversal potentials Ecasa, Eavpa -90, 40 mV
Number of synaptic contacts frokto | Nei, Nees Nie, Nij 3000, 3000, 500, 500
Membrane time-constants Te, Ti 0.094,0.042%
Resting potentials vjest -70 mV
Synaptic rate-constants YGABAs YAMPA 65, 300 st
Non-specific firing-rates Pnes Pni 3460, 5070
Standard deviation of non-specific fluctuations o, oF 1000, 0 st

whereQ"@ andV:P*® denote, respectively, the maximal firing-rate and spike-
threshold of populatiork and o denotes the standard-deviation of spike-
thresholds over populatida

The variableél‘/ﬁMPA and‘I"éABA are dimensionless and model the dependence
of AMPAergic and GABAergic synaptic conductance on the membrane poten
tial of the post-synaptic neural populatiknThey are given by

Eampa — Vk

k
Faeal0 = TEen =i
k

(8.A.6)

whereEavpa denotes the reversal-potential of this receptors type, and simi-
larly for GABAergic synaptic transmission. The baseline values for all thode
parameters were taken fréfhand are listed in Table 8.A.1.
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General Discussion

In 50-60% of patients treated with therapeutic hypothermia after cardiac ar-
rest, consciousness never retdrAsEarly identification of patients with poor
neurological outcome can prevent continuation of futile medical treatment,
decreases ICU stay and medical costs, and shortens the time of uncertainty
for the patient’s family. Early and reliable prognostication is therefore highly
relevant. However, neurological evaluation is limited in patients treated with
hypothermia. Several studies showed that the use of clinical and biocdemic
parameters, such as the motor score, have become unreliable as pogggos
rameters since the introduction of therapeutic hypothetriiamaging meth-

ods only visualize structural damage, while functional failure is not assges
The EEG directly measures the spontaneous electrical activity of the brain
through the skull and reflects the functioning of cortical synafsebich is

the process that is the most sensitive for ischéfia

A new application of an old method

The EEG is a very old measurement tool. In 1924, Hans Berger already
recorded the first human EEG on his $6%. So why is the EEG until now

not routinely used in patients after cardiac arrest? Before the introduction
of hypothermia in 2002 as a treatment for comatose patients after cardiac ar-
rest'®14 patients received no sedation and clinical parameters were reliable for
the prediction of poor neurological outcofie The need for other parameters
for outcome prediction, therefore, strongly increased since the intrioduaf
hypothermia. While most clinical and biochemical markers become unreliable,
we show that the EEG during hypothermia can still reflect the neurolodecal s
tus of the patient and predicts neurological outcome at an early stage. Within
the period of hypothermia the patterns that can be observed in patients with
both poor and good outcome show characteristic evolutions. The piiignos



value of these EEG changes is critically dependent on the time since cardiac
arrest. Therefore, this evolution can only be observed when the rghisgin
time are monitored, preferably with continuous EEG registrations.

Effect of hypothermia and sedation on the EEG

Although hypothermia canfiect the EEG at temperatures below 30 the
effect of mild hypothermia (3%) on the EEG is relatively small, with only
small shifts in frequencié§l’. The EEG changes to a burst suppression pat-
tern around 25C and electrocerebral silence appears aroui€i8 Also, the

use of anaesthetics can influence the EEG, however these influercsslbr
known. In the relatively low dosages that were used in our patients, tkee EE
remains continuous, with anteriorization of the alpha rhythil Patterns we
found to be associated with poor outcome cannot be solely drug inducad in o
patients.

EEG rhythms in postanoxic coma

While measuring the EEG in patients after cardiac arrest, a rich variety in
rhythms can be observed that evolve over time. Patients with good outcome
can initially show iso-electric EEGs or low-voltage EEG patterns, which re-
cover relatively fast within the period of hypothermia to a burst-suppress

or a continuous pattern. This improvement in EEG rhythms in patients with
good outcome is most likely a reflection of synapses which recover from
reversible damage. Other patients with good neurological outcome almost
immediately show a continuous EEG pattern with relatively fast frequencies.
Patients with poor outcome show initially iso-electric patterns, low voltage or
burst-suppression patterns. Their EEGs do not improve at all, or at A muc
slower timescale in comparison to patients with good outcome. The rate of
improvement is therefore very important for the outcome and presumably re-
flects the reversibility of the cortical damage. Some patients with poor outcome
even show deterioration of their EEG patterns, which might reflect sacgnd
ischemic injury including cell swelling and cell death.

A first classification of the EEG background pattern and the evolution over
time is highly relevant for the prediction of neurological outcome in patients
after cardiac arrest. Therefore, the analysis of continuous EEG nesasts
should be focused on thevolutionin EEG background patterns. This requires

a different and less intensive approach of visual analysis in comparison to the



visual analysis of a 20 min routine recording in which each page of 1(hdeco
of EEG is extensively reviewed.

Prediction of poor neurological outcome

In our first cohort study of 60 patients, described in Chapter 2, wavatio
that EEGs with an iso-electric or low-voltage pattern at 24 hours afterazard
arrest reliably predict poor neurological outcome with a sensitivity of 40%
and a 100% specificity. In contrast, the sensitivity for bilateral absehce o
the SSEP was only 24%. Also, burst-suppression patterns at 24 heves w
associated with poor neurological outcome, but not inevitably so, simoe so
of the patients with good neurological outcome had a burst suppresdtermpa

at 24 hours after cardiac arrest. However, we discovered that m#&eyetht
types of burst-suppression patterns exist and that a subclassifichkbonst
suppression patterns might be useful. In Chapter 3 we show that “burst-
suppression with identical bursts” is a distinct pathological EEG pattern in
which shapes of subsequent bursts are identical. Burst-suppregtidden-

tical bursts was in our series only observed in patients afféusdi cerebral
ischemia and was inevitably associated with poor outcome.

To test our findings that EEGs with iso-electric patterns, low voltage paterns
burst-suppression patterns with identical bursts at 24 hours afteacamlest

are associated with poor neurological outcome, we evaluated a larget 0bh
148 patients. The results are given in Chapter 4. We found that this comnbine
group of severe EEG patterns at 24 hours after cardiac arresoisates with
poor neurological outcome with a sensitivity of 48% and a specificity of 2700%

Prediction of good neurological outcome

The EEG can be used for the prediction of good neurological outcomelas w

In the first group of 60 patients (Chapter 2), we found that at 12 haites
resuscitation, 43% of the patients with good neurological outcome showed
continuous, diuse slowed EEG rhythms, while non of the patients with poor
neurological outcome showed one of these rhythms within 12 hours after ca
diac arrest. In the larger group of patients described in Chapter 4 westiltlf

that normal or dfuse slowed EEG patterns at 12 hours after cardiac arrest are
associated with good neurological outcome with a sensitivity of 57%. Unfor-
tunately, there where two patients with poor neurological outcome showing
a diffuse slowed EEG pattern at 12 hours after cardiac arrest, resulting in a
specificity of 96%. However, both patients died because from cardidubgims

and not from postanoxic encephalopathy.



Self-fulling prophecy

A problem in all unblinded studies on the prediction of neurological outcome
is the so called “self-fulfilling prophecy®22 In an ideal study the treating
physicians are completely blinded to all EEG and SSEP registrations and treat-
ment should not be limited or withdrawn in any patient included in the study.
However, this is considered as unethical. In our study, the treating féuysic
were not completely blinded to the EEG and SSEP registrations, which may
have influenced the clinical decision making. Standard guidelines on patients
treatment, including guidelines on the continuation of treatment, were strictly
followed. According to these guidelines, the EEG at 24 hours was nat use
for treatment decisions. Furthermore, visual classification of the EEQpsitte
was performedfiline. Therefore the likelihood of a self-fulfilling prophecy is
expected to be very small.

Treatment of electroencephalographic status epilepticus

The increased use of EEG monitoring leads to an increased detection-of elec
troencephalographic seizures and status epilepticus. However, itrentyr
unknown whether these patterns reflect epileptic activity that can bedreate
with anti-epileptic drugs to improve patients’ outcome, or rather severe is-
chemic damage, in which treatment is fufife?’. In Chapter 5 we showed in a
retrospective study that moderate treatment with anti-epileptic drugs dbes no
improve outcome of patients with electroencephalographic status epilepticus
after cardiac arrest. Since no strict treatment guidelines existed for &pilep
form activity in these patients, both the nature and the intensity of treatment
varied among physicians, however treatment was mostly moderate started at a
a median of 47 hours after cardiac arrest. Whether these patients waoefiit be
from earlier and more aggressive treatment warrents further résearc

The diagnosis of status epilepticus on the electroencephalogram (EEG) in
comatose patients after cardiac arrest is controveéfsiél It may consist of
unequivocal seizures: generalized spike-wave dischargess air 3aster or
clearly evolving discharges of any type as4r faster, either generalized

or focal®. However, some experts also consider other rhythmic or periodic
patterns, such as generalized or lateralized periodic dischargestbmiby
delta activity, as seizure activity?® In Chapter 8 we showed by using a
computational model, that generalized periodic discharges (GPDs) maly res
from selective synaptic damage. Therefore, GPDs observed in patights
postanoxic encephalopathy might represent severe ischemic damage fste



ictal activity. However, it is currently unknown whether this ischemic damage
of synapses is potentially reversible and whether treatment with anti-epileptic
drugs may promote recovery.

Quantitative EEG analyses

Quantitative EEG analysis can assist in decreasing the time needed fdr visua
interpretation of long EEG recordings and in making the visual analysis more
objective?®3%-32 |n Chapter 6 we implemented an automatic system for real-
time classification of the EEG in critically ill patients in the ICU. A user in-
terface was developed to present both trend-curves and a diagnatgtit m

text form. In Chapter 7 we introduced the “Cerebral Recovery In@axl)’,

which is a score ranging from 0 to 1 that can be used for grading of BEGS
patients with postanoxic encephalopathy. Both systems are ready for online
use in the ICU. We showed that the use of both systems is feasible. The use
of these systems in the clinical setting still has to be evaluated and most likely
the user interfaces of both systems have to be adapted. In further pienzin

it is important to keep in mind that the systems are not primarily designed to
replace visual analysi§3°. Instead, quantitatively EEG analysis should be
used to assist in the visual analysis by detecting changes in the EEG and by
making a first rough classification of the EEG.

Computational modelling of specific EEG patterns

The EEG measures spontaneous cortical activity, and is a reflection of the
synaptic activity of the pyramidal cells in the corfexMore detailed under-
standing of the generation of specific EEG patterns could increase thhtinsig
in the pathological processes of ischemia. In an ideal situation, the EEG giv
patient specific information about the location and severity of the brain injury
and whether this information is reversible or not. Computational modelling
could help to evaluate which brain abnormalities are reflected by each specifi
EEG pattern. In Chapter 8 we showed that GPDs might be a reflection of
selective ischemic damage of glutamatergic synapses.

Future perspectives

The results of the use of EEG for the prediction of neurological outcome
are very positive and seem to be robust. The prospective cohost sted
performed can be interpreted as a class 1 study according to the defifdtions



levels of evidence given by the Oxford Centre for Evidence-basetidites3®.

In the future, EEG within 24 hours after cardiac arrest should be patho-
dard post cardiac arrest care. However, before the evidenckasa level A
and clinical guidelines will be changed, an additional independent, natefe
multi-centre, study is necessary to confirm our results. Confirming thésesu
in a larger cohort will also tighten the 95% confidence interval.

Another relevant issue concerns the inter-observer-agreementrboffine
analysis and in real-time situations. The interobserver agreement of standa
ized terminology for the description of rhythmic and periodic EEG patterns is
known to vary from high or moderate to even slight or fair, with higher \&lue
for the main terms and lower values for the more complex, subtle and optional
terms’’-38 Since for the prediction of neurological outcome we look at the
background pattern, and the categories we used were defined in aleary
manner, we expect that the interobserver agreement will be high. Fudhe

we also showed that it is possible to quantify thediences in EEG patterns.
Still, great care should be taken in the interpretation. The classification-of iso
electric and burst suppression EEGs with similar bursts is relatively straight-
forward. However, there might be discussion in some cases of low voltage
EEG patterns that are just above or just below the limit ofi20

The prognostic value of EEG might be increased with further charactieniza

of burst-suppression patterns with non similar bursts. The duration ofiie s
pressions, and the shape and content of the bursts might contain infarmatio
that is relevant for the neurological progncSi€’. Prediction may be further
improved and extended towards other points of time after cardiac arrest by
combining neurophysiological, biochemical, and clinical markers.

To answer the question whether treatment of electroencephalographis sta
epilepticus, including GPDs, is indeed futile, a large randomized controf stud
including early and aggressive treatment is necessary.

In the domain of quantitative EEG analysis, further improvement is also pos-
sible. Current systems have to be tested in an ICU environment, since both
systems were only evaluatelme. Comments of the treating physicians on
their usage have to be studied and the user interface of both systems might
have to be improved.



Similar to our study in which we simulated the generation of GPDs, com-
putational modelling can be used for improvement of our understanding of
other specific EEG patterns, such as burst suppression patterns withaut
similar bursts. Computational modelling is a great tool to test a hypothesis
or to generate a new prediction that can be tested experimentally. Theerefor
computational modelling should be combined with other disciplines such as in
vitro or in vivo models or post mortem analysis.

Conclusion

This thesis shows that the EEG contains information that is useful for the
prediction of neurological outcome in postanoxic patients treated with mild
hypothermia. We show that timing of the EEG is critical and th&edences

of EEG patterns between patients recovering and not recoveringeialty

large in the first 24 hours after cardiac arrest. At 24 hours, the comhigiroeip

of iso-electric, low voltage, and “burst-suppression with identical bureds
invariably associated with poor outcome. At 12 hours, normal Suskly
slowed EEG patterns were strongly associated with good outcome. Secondly
we implemented two computer algorithms and we showed that quantitative
analysis can be used to assist in the interpretation of long-term EEG ig®rd
measured in the ICU. Thirdly, we showed that computational modelling can
be used to test a hypothesis on the generation of specific EEG pattems. In
computational model we showed that GPDs can be explained as a refldction o
selective ischemic damage of glutamatergic synapses.

References

[1] Nielsen N, Hovdenes J, Nilsson F, Rubertsson S, Stamm8uide K, et al.
Outcome, timing and adverse events in therapeutic hypwoileafter out-of-
hospital cardiac arresficta Anaesthesiol Scang009; 53:926—-934.

[2] van der Wal G, Brinkman S, Bisschops LLA, Hoedemaekers, @& der Ho-
even JG, de Lange DW, et al. Influence of mild therapeutic thgroia after
cardiac arrest on hospital mortalit@rit Care Med 2011; 39:84-88.

[3] Al Thenayan E, Savard M, Sharpe M, Norton L, and Young Bd#etors of poor
neurologic outcome after induced mild hypothermia follogvicardiac arrest.
Neurology 2008; 71:1535-7.

[4] Rossetti AO, Oddo M, Logroscino G, and Kaplan PW. Progication after
cardiac arrest and hypothermia: a prospective stAdyn Neuro) 2010; 67:301—
307.

[5] Oddo M and Rossetti AO. Predicting neurological outcaafter cardiac arrest.
Curr Opin Crit Care 2011; 17:254-259.



[6]

[7]

[8]

[9]

[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

Kamps MJA, Horn J, Oddo M, Fugate JE, Storm C, Cronberg &].ePrognos-
tication of neurologic outcome in cardiac arrest patiefitsranild therapeutic
hypothermia: a meta-analysis of the current literatutetensive Care Med
2013; 39:1671-1682.

Steffen IG, Hasper D, Ploner CJ, Schefold JC, Dietz E, Martens &l. eMild
therapeutic hypothermia alters neuron specific enolase astaome predictor
after resuscitation: 97 prospective hypothermia patieatspared to 133 histor-
ical non-hypothermia patient€rit Care, 2010; 14:R69.

Fugate JE, Wijdicks EFM, Mandrekar J, Claassen DO, MaBht White RD,
et al. Predictors of neurologic outcome in hypothermiarafsediac arrestAnn
Neurol 2010; 68:907-914.

Niedermeyer E and Lopes da Silva F. ElectroencephafityraBasic principles,
clinical applications, and related fields. Lippincott, Widims, and Wilkins, 4th
edition, 1999.

Hofmeijer J and van Putten MJAM. Ischemic Cerebral DgeaAn Appraisal
of Synaptic Failure Stroke 2012; 43:607—615.

Berger H. Uber das Elektrenkephalogramm des MensdkenArchiv fur Psy-
chiatrie und Nervenkrankheiteh929; 527-570.

Haas LF. Hans Berger (18731941), Richard Caton (1828).%nd electroen-
cephalographyd Neurol Neurosurg Psychiatr2003; 74:9.

The hypothermia after cardiac arrest study group. Miktapeutic hypothermia
to improve the neurologic outcome after cardiac arré$tEngl J Med 2002;
346:549-556.

Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, eutge G, et al.
Treatment of comatose survivors of out-of-hospital cardierest with induced
hypothermia.N Engl J Med 2002; 346:557-563.

Wijdicks EFM, Hijdra A, Young GB, Bassetti CL, and Wiels® Practice pa-
rameter: prediction of outcome in comatose survivors afediopulmonary
resuscitation (an evidence-based review): report of thaliQuStandards Sub-
committee of the American Academy of Neurologyeurology 2006; 67:203—
210.

Kochs E. Electrophysiological monitoring and mild loghbermia.J Neurosurg
Anesthesiql1995; 7:222-228.

Stecker MM, Cheung AT, Pochettino A, Kent GP, Patter$pheiss SJ, et al.
Deep hypothermic circulatory arrest: Iffects of cooling on electroencephalo-
gram and evoked potentialdnn Thorac Surg2001; 71:14-21.

San-Juan D, Chiappa KH, and Cole AJ. Propofol and thetrelencephalogram.
Clin Neurophysial2010; 121:998-1006.

Hindriks R and van Putten MJAM. Meanfield modeling of pofol-induced
changes in spontaneous EEG rhythiNsuroimage2012; 60:2323-2334.
Jofe AR. Are somatosensory evoked potentials the best predi€toutcome
after severe brain injury? Caution in interpreting a systécireview. Intensive
Care Med 2005; 31:1457.



[21] Fugate JE, Wijdicks EFM, White RD, and Rabinstein Aa. Bdeerapeutic
hypothermia ffect time to awakening in cardiac arrest survivorsizurology
2011; 77:1346-1350.

[22] Bouwes A, Binnekade JM, Kuiper MA, Bosch FH, Zandstra Déornvliet AC,
et al. Prognosis of coma after therapeutic hypothermia: dspective cohort
study. Ann Neuro] 2012; 71:206-212.

[23] Scheuer ML. Continuous EEG monitoring in the intensiage unit.Epilepsia
2002; 43 Suppl 3:114-127.

[24] Chong DJ and Hirsch LJ. Which EEG patterns warrant treatrim the critically
ill? Reviewing the evidence for treatment of periodic epiiform discharges
and related patterns. Clin Neurophysiql2005; 22:79-91.

[25] Brenner RP. How useful is EEG and EEG monitoring in thetely ill and how
to interpret it?Epilepsig 2009; 50 Suppl 1:34-37.

[26] Abend NS, Dlugos DJ, Hahn CD, Hirsch LJ, and Herman ST.e O6EEG
monitoring and management of non-convulsive seizuredticalty ill patients:
a survey of neurologistNeurocrit Carg 2010; 12:382—-389.

[27] Bauer G and Trinka E. Nonconvulsive status epileptiand coma.Epilepsia
2010; 51:177-190.

[28] Brenner RP. Is It StatusEpilepsig 2002; 43:103-113.

[29] Hirsch LJ. Atlas of EEG in critical care. Wiley BlackwgeP010.

[30] Agarwal R, Gotman J, Flanagan D, and Rosenblatt B. AatiyEEG analysis
during long-term monitoring in the ICLElectroencephalogr Clin Neurophysjol
1998; 107:44-58.

[31] van Putten MJAM. The colorful brain: visualization oEE background pat-
terns.J Clin Neurophysigl2008; 25:63—-68.

[32] Foreman B and Claassen J. Quantitative EEG for the tieteaf brain ischemia.
Crit Care, 2012; 16:216.

[33] Anderson NR and Doolittle LM. Automated analysis of EEpportunities and
pitfalls. J Clin Neurophysiql2010; 27:453-457.

[34] Lodder SS and van Putten MJAM. Quantification of the aBEHG background
pattern.Clin Neurophysiql2013; 124:228-37.

[35] Lodder SS, Askamp J, and van Putten MJAM. Inter-ictakepletection using
a database of smart templat€lin Neurophysiql2013; 124:2328-2335.

[36] Phillips B, Ball C, Sackett D, Badenoch D, Straus S, Heg/B, et al. Levels of
Evidence (March 2009), 2009.

[37] Gerber PA, Chapman KE, Chung SS, Drees C, Maganti RK, NgeYal. Inter-
observer agreement in the interpretation of EEG patteriesitically ill adults.
J Clin Neurophysiql2008; 25:241-249.

[38] Mani R, Arif H, Hirsch LJ, Gerard EE, and LaRoche SM. Imger reliability
of ICU EEG research terminology. Clin Neurophysiql2012; 29:203-212.

[39] Akrawi WP, Drummond JC, Kalkman CJ, and Patel PM. A corgmr of
the electrophysiologic characteristics of EEG burst-seggion as produced by
isoflurane, thiopental, etomidate, and propofbNeurosurg Anesthesial996;



8:40-46.

[40] Wennervirta JE, Ermes MJ, Tiainen SM, Salmi TK, HynminglS, Sarkeh
MOK, et al. Hypothermia-treated cardiac arrest patienth gpod neurological
outcome dffer early in quantitative variables of EEG suppression arile @p
form activity. Crit Care Med 2009; 37:2427-2435.



Summary

The electroencephalogram (EEG) contains information that is usefuhéor
prediction of both poor and good neurological outcome in patients with
postanoxic encephalopathy after cardiac arrest treated with mild hypother
mia. The combined group of iso-electric, low voltage or burst-suppression
patterns with identical bursts recorded at 24 hours after cardiad etiably
predicts poor neurological outcome with a sensitivity of 48% (Cl: 35-60%)
and a specificity of 100% (Cl: 94-100%) (Chapters 2 and 4). In csihtra
the sensitivity for bilateral SSEP absence was only SSEP 24% (Cl: W44
(Chapter 2). “Burst-suppression with identical bursts” is a distinct pagfical

EEG pattern characterized by bursts with a high similarity. Burst-suppressio
with identical bursts can only be seen afteffue cerebral ischemia and is
inevitably associated with poor neurological outcome (Chapter 3). In additio
normal or difusely slowed EEG patterns at 12 hours after cardiac arrest are
associated with a good neurological outcome with a sensitivity of 57% (CI:
42—-71%) and a specificity of 96% (Cl. 86—100%) (Chapters 2 and 4).

The increased use of EEG monitoring leads to an increased detection-of elec
trographic seizures and status epilepticus. However, it is currentlyownkif

and how aggressive patients with these patterns should be treated. ret-our
rospective study, moderate treatment with anti-epileptic drugs did not improve
outcome of patients with electrographic status epilepticus after cardiat arres
(Chapter 5).

Quantitative EEG analysis can assist in decreasing the time needed fdr visua
interpretation of the long EEG recordings and in making the visual analysis
more objective. We implemented two computer algorithms that can assist in
the interpretation of long EEG recordings. The first system can be wsed f
real-time classification of the EEG in critically ill patients. This system has



an accuracy of 85-88% (Chapter 6). Secondly, we introduced theebCa
Recovery Index (CRI)”, which is a score ranging from 0 to 1, that ban
used for the grading of EEGs in patients with postanoxic encephalopathy. A
24 hours after cardiac arrest, a CRI0.29 was always associated with poor
neurological outcome, with a sensitivity of 55% (Cl: 32—76%) and a sjpéyifi

of 100% (CI: 86—100%). At the same time point a CR0.69 predicted good
neurological outcome, with a sensitivity of 25% (Cl: 10—-47%) and a sjpéyifi

of 100% (CI: 85-100%) in the test set (Chapter 7).

Finally, we showed by using a computational model that generalized periodic
discharges, an EEG pattern that can be observed in patients with pagt-ano
encephalopathy, can be explained as a reflection of selective ischamégeda

of glutamatergic synapses (Chapter 8).



Samenvatting

Het elektro-encefalogram (EEG) bevat kan gebruikt worden vedrvbor-
spellen van zowel goede als slechte neurologische uitkomst i@npeti met
postanoxische encefalopathie na een hartstilstand, die behandeldhwioete
milde therapeutische hypothermie. Een slechte neurologische uitkomst kan 24
uur na de hartstilstand betrouwbaar worden voorspelt op basis vaecdeng
bineerde groep van iso-elektrische, laag gevolteerde en burstesgpppatro-

nen met identieke bursts, met een sensitiviteit van 48% (95% betrouvddaarh
dsinterval: 35-60%) en een specificiteit van 100% (95% betrouwhidarhe
terval: 94-100%) (Hoofdstukken 2 en 4). Daarentegen, is de setasitixan

een bilateraal afwezige SSEP response slechts 24% (95% betrobeidaar-
terval: 10—-44%) (Hoofdstuk 2). “Burst-suppressie met identieketgilisseen
onderscheidend en pathologisch EEG patroon, dat wordt gekasaieiet door
bursts met een hoge mate van gelijkenis. Burst-suppressie met identiste bur
kan alleen worden gezien nafitise cerebrale ischemie en is onvermijdelijk
geassocieerd met slechte neurologische uitkomst (Hoofdstuk 3). d&zesrn
zijn normale of dffuus vertraagde EEG patronen, gemeten 12 uur na de hart-
stilstand sterk geaccocieerd met een goede neurologische uitkomst, met een
sensitiviteit van 57% (95% betrouwbaarheidsinterval: 42—71%) eng®si-s
ficiteit van 96% (95% betrouwbaarheidsinterval: 86—100%) (Hoofdsmi2

and 4).

Het toegenomen gebruik van EEG monitoring leidt tot een toename in de
detectie van elektrografische insulten en status-epilepticus. Echter,op-dit
ment is het nog onduidelijk of en hoe agressief gran met deze patronen
behandeld moeten worden. In onze retrospectieve studie liet een gematigde
behandeling met anti-epileptica geen verbetering zien in de uitkomst van
patiénten met een elektrografische status-epilepticus na een hartstilstafid-(Hoo
stuk 5).



Kwantitatieve EEG analyse kan helpen om de tijd die nodig is voor vi-
suele interpretatie van langdurige EEG registraties te reduceren en om de
visuele analyse objectiever te maken. We hebben twee computer algoritmes
geémplementeerd die kunnen bijdragen aan de interpretatie van langdurige
EEG registraties. Het eerste systeem kan gebruikt worden voor reatitsie
sificatie van het EEG in pdnten op de intensive care afdeling. Dit systeem
heeft een nauwkeurigheid van 85-88% (Hoofdstuk 6). Daarnadtem we

de “Cerebral Recovery Index (CRI)” geintroduceerd, dit is easreswan 0

tot 1, die gebruikt kan worden voor het graderen van EEGs irgpiaih met
postanoxische encefalopathie. Op het tijdstip 24 uur na de hartstilstaad, wa
een CRI< 0.29 altijd geassocieerd met een slechte neurologische uitkomst,
met een sensitiviteit van 55% (Cl: 32-76%) en een specificiteit van 100%
(95% betrouwbaarheidsinterval: 86—100%). Op hetzelfde tijdstip, petds

een CRI> 0.69 goede neurologische uitkomst met een sensitiviteit van 25%
(95% betrouwbaarheidsinterval: 10—-47%) en een specificiteit van 195%
betrouwbaarheidsinterval: 85-100%) in de test set (Hoofdstuk 7).

Tot slot, hebben we met behulp van een computer model aangetoond dat
gegeneraliseerde periodieke ontladingen, een EEG patroon dat kdenwvo
gezien in patnten met postanoxische encefalopathie, verklaard kunnen wor-
den door selectieve ischemische schade van glutamaterge synapséa (Hoo
stuk 8).
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