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General Introduction

Among all organs, the brain is the most dependent on continuous oxygen and
glucose supply. At rest, the brain uses around 20% of the total energy con-
sumption1,2, while there are almost no energy reserves. Cerebral function fails
within a few seconds after cessatation of cerebral blood flow, and within 3to 5
minutes cortical damage becomes irreversible1. Neurological injury caused by
global ischemia is known as postanoxic encephalopathy. The severity of the
postanoxic encephalopathy is mainly determined by the duration and depth of
the decrease in cerebral blood flow. Therefore, in patients with cardiacarrest,
the time from cardiac arrest to return of spontaneous circulation is very impor-
tant for the neurological outcome3. Patients with postanoxic encephalopathy
who do not immediately regain consciousness after restoration of blood flow
are admitted to the intensive care unit (ICU) for further treatment. Despite in-
tensive treatment, in 50–60% of these patients consciousness will never return
due to severe ischemic brain injury3,4.

Early pathophysiological processes during ischemia include functional neu-
ronal impairment, which is followed by structural failure in a later stage. The
first functional process to fail is synaptic transmission2, which requires about
44% of the brain’s energy consumption5. In mild ischemia, failure of synaptic
transmission might be the only effect2. The changes of synaptic function are
assumed to be reversible if blood flow is restored in time, however prolonged
ischemia can lead to persistent synaptic failure2,6,7. When the other energy
dependent processes fail as well, cell swelling will occur, which eventually
will lead to cell death.

The only treatment of proven benefit to improve outcome in patients with
postanoxic encephalopathy is mild therapeutic hypothermia8–10. During mild
therapeutic hypothermia the body temperature is actively lowered to 33◦C for
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a period of 24 hours. Treatment with hypothermia protects the brain against
secondary ischemic injury by affecting various steps of the ischemic cascade.
Hypothermia affects several metabolic pathways, inflammatory reactions and
apoptosis processes, and it promotes neuronal integrity10.

During hypothermia and passive rewarming till normal body temperature af-
terwards, patients are sedated. Once a patient is at normothermia, sedation
is stopped. If the patient does not awake after rewarming, the clinicians are
confronted with the question whether the remaining neurological injury is still
reversible. At some point, the treating clinician has to make the difficult deci-
sion whether continuation of medical treatment is still worthwhile. Early and
reliable prediction of the neurological outcome is therefore highly relevantand
can prevent unjustified discontinuation of medical treatment as well as contin-
uation of futile medical treatment. Thereby, it decreases unnecessary ICU stay
and medical costs, and shortens the time of uncertainty for the patient’s family.

In patients treated with hypothermia neurological evaluation is limited. Several
studies showed that the use of clinical parameters, such as the motor score,
have become unreliable as prognostic parameters since the introduction of
therapeutic hypothermia11–14. Also the use of biochemical parameters (with
the current cut-off values) has become less reliable since the introduction of
hypothermia13,15,16. A possible explanation for the lower reliability of these
clinical and biochemical markers might be the long time that is needed before
the sedatives are completely worn off in these patients. The use of imaging
methods is not without risk in ICU patients, because the patients have to
be transported from the ICU to the scanner. Furthermore, imaging methods
give only a snapshot of the dynamic ischemic process. Even more important,
with imaging methods only structural failure can be observed, while functional
failure is not assessed. Clinical neurophysiology has provided two techniques,
which do allow evaluation of the functioning of the nervous system in these pa-
tients: the somatosensory evoked potential (SSEP) and the electroencephalo-
gram (EEG).

Somatosensory evoked potential
The somatosensory evoked potential (SSEP) is a small electrical signal (<10–
50 µV) that can be recorded non-invasively from the skull, after giving a set
of electrical stimuli to one of the peripheral nerves. Measurement of the SSEP
evaluates the complete pathway from the peripheral sensory nervous system
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to the sensory cortex that runs via the dorsal column lemniscal pathway via
the spinal cord, brainstem and thalamus17,18. The earliest cortical potential
is the N20, which is generated in the primary somatosensory cortex, where
thalamocortical cells make synaptic connections with the superficial and deep
pyramidal cell layers19,20. In comparison to the later cortical responses, the
N20 is the most robust and is the latest waveform to disappear during increas-
ing levels of encephalopathy. Furthermore, the N20 is relatively independent
on the level of sedation17.

Bilateral absence of the N20 has been identified as the most powerful predictor
of poor outcome in patients who are unconscious after circulatory arrestnot
being treated with hypothermia, with a false positive rate of 0.7%21,22. In
patients treated with therapeutic hypothermia, absence of the N20 at 72 hours
after cardiac arrest also indicates a poor prognosis. In two large prospective
studies, including 228 patients, the median nerve SSEP at normothermia was
found to be a reliable tool to predict poor neurological outcome, with a false
positive rate of 0%12,23. However, a retrospective study of Leithner in 122
available SSEPs revealed one patient treated with therapeutic hypothermia
after cardiac arrest with bilateral absent N20 responses at day 3 with good
neurological outcome24. Despite this single case, pooled analysis of these
three recent studies12,23,24 on cardiac arrest patients after hypothermia still
gives a very low false positive rate of 0.9%, indicating that bilateral absence of
the N20 should be viewed as a reliable predictor for poor outcome in patients
treated with hypothermia.

Unfortunately, preservation of the N20 does not imply a favourable outcome
in patients after cardiac arrest. In fact, only a small proportion of patients with
a poor outcome after resuscitation has negative SSEP responses resulting in a
low sensitivity of this parameter for the prediction of poor outcome. This low
sensitivity might be explained by selective vulnerability of synapses. The N20
response is dependent on the thalamocortical synapses in the primary sensory
cortex. Therefore, the SSEP does not give information on the functioning of
the intra-cortical synapses, which are more vulnerable to ischemia20.

Electroencephalography
The electroencephalogram (EEG) measures the spontaneous electricalactiv-
ity of the brain through the skull. In general, the EEG measures potential
differences originating from synaptic activity of the pyramidal cells of the cor-
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tex1. Thereby the EEG directly reflects the functioning of cortical synapses,
which is the process that is the most sensitive for ischemia. The dendrites
of the pyramidal cells almost permanently receive synaptic input. This in-
put induces excitatory or inhibitory postsynaptic potentials. Currents derived
from synapses move through the dendrites and cell body to the axon and pass
through the membrane to the extracellular space along the way, resulting in a
current dipole. The electric activity generated by a single neuron is too small to
be picked up by EEG. However, pyramidal cells synchronize their activityand
the neurons in the cortex are uniformly oriented, perpendicular to the cortex,
resulting in sufficiently large extracellular currents to allow recording of scalp
potentials.

Since the EEG measures spontaneous brain activity, the EEG can be used at
the bedside of the patient for continuous monitoring of the brain. In addition,
the EEG has a high time-resolution. Evolution of EEG patterns, starting with
the period during hypothermia, might therefore provide clinically relevant in-
formation regarding recovery from postanoxic coma.

Several studies indicated that EEG monitoring might have a role in the progno-
sis of neurological outcome. However, previously studied EEG characteristics
varied widely and in most studies it is unclear at which time after cardiac arrest
these were measured, which makes it difficult to convert these results into
clinical guidelines. In general, continuous patterns are associated with good
neurological outcome, both during hypothermia and at normothermia12,25–28.
In contrast, flat EEGs, burst suppression EEGs and status epilepticus at nor-
mothermia are associated with poor neurological outcome12,25–28.

One of the disadvantages of the EEG is the complexity of the signal. The
EEG signals can only be reliably interpreted by an experienced electroen-
cephalgrapher29,30. In a standard EEG, 19 channels of EEG registrations are
displayed in pages of 10 seconds. Therefore, the interpretation of continuous
EEG registrations of at least 24 hours is time-consuming30–32. To reduce the
time needed for EEG interpretation, the addition of quantitative EEG analysis
to the standard visual analysis of the EEG might play an important role29–32.
Another advantage of quantitative EEG analysis is that it makes the analysis
more objective29,30.
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Goals
This thesis is subdivided into three parts, each with its own corresponding
goal. The first goal is to evaluate whether the EEG can improve the prediction
of neurological outcome in patients after cardiac arrest. To be useful in clinical
practice, the false positive rate of the EEG for predicting poor outcome should
be 0% (or lower than 0.9% comparable to the false positive rate of the SSEP),
while the sensitivity should be high. To have added value to the SSEP mea-
surement, the EEG should at least correctly predict poor neurological outcome
in some of the patients with present SSEP responses. In addition, we evaluate
whether the EEG can be used for the prediction of good neurological outcome.

The second goal of this thesis is to evaluate whether quantitative EEG analysis
can assist in the classification of EEG patterns and prediction of the neurolog-
ical outcome in patients after cardiac arrest.

Describing and scoring the EEG for prognostic purposes can be very useful
and gives us information on the severity of the ischemia. However, it is still a
general and descriptive assessment of EEG patterns resulting from ischemia.
Understanding the generation of specific EEG patterns increases the insight
in the pathophysiological processes resulting from ischemia. The third goal
of this thesis is to explore if computational modelling can help us to discover
what type of brain injury is reflected by a specific EEG pattern.

Outline of thesis
Part I: Clinical Studies
In this part we describe our clinical studies in which we evaluated the prog-
nostic value of continuous EEG registrations in patients with postanoxic coma
after cardiac arrest. Chapter 2 describes a cohort of 60 patients in which we
evaluated the prognostic value of continuous EEG registrations and SSEP mea-
surements. Chapter 3 describes our analysis of a distinct EEG pattern, “burst-
suppression with identical bursts”, and its potential prognostic role in thesepa-
tients. Chapter 4 gives the results of a large cohort study to the prognosticvalue
of EEG performed in two hospitals (Medisch Spectrum Twente, Enschede,and
Rijnstate Hospital, Arnhem). In this study, in which we included 148 patients,
we wished to confirm our earlier findings of Chapter 2, combined with the new
criteria given in Chapter 3.
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Increased use of EEG monitoring for prognostic purposes also leads to in-
creased detection of electroencephalographic seizure patterns. However, it is
unclear whether treatment of electroencephalographic seizure patternswith
anti-epileptic drugs improves outcome in these patients32–35. Chapter 5 de-
scribes a retrospective study to the effect of treatment with anti-epileptic drugs
in comatose patients after cardiac arrest with electroencephalographic seizures
and status epilepticus.

Part II: Signal Analysis
Part II of the thesis describes the development and implementation of two
automated systems for EEG analysis in the ICU. The first one, described in
Chapter 6, is developed for ICU patients in general. With this method, a first
classification of the raw EEG is made. The second one, described in Chapter 7,
is made with the specific purpose of rating the EEG of comatose postanoxic
patients for prognostic purposes.

Part III: Computational Modelling
Chapter 8 describes our study with a computational meanfield model to sim-
ulate generalized periodic discharges, which is a specific EEG pattern thatis
often observed in patients after acute global ischemia.
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Abstract
Objective: To evaluate the value of continuous electroencephalography(EEG)
in early prognostication in patients treated with hypothermia after cardiac ar-
rest.
Design: Prospective cohort study.
Setting: Medical Intensive Care Unit (ICU).
Patients: Sixty patients admitted to the ICU for therapeutic hypothermia after
cardiac arrest.
Intervention: None.
Measurements and Main Results: In all patients continuous EEG and daily so-
matosensory evoked potentials (SSEP) were recorded during the first 5days of
admission or until ICU discharge. Neurological outcomes were based on each
patient’s best achieved Cerebral Performance Category (CPC) score within 6
months. Twenty-seven out of 56 patients (48%) achieved good neurological
outcome (CPC 1–2). At 12 hrs after resuscitation, 43% of the patients with
good neurological outcome showed continuous, diffuse slowed EEG rhythms,
while this was never observed in patients with poor outcome. The sensitivity
for predicting poor neurological outcome of low voltage and iso-electric EEG
patterns 24 hrs after resuscitation was 40% (95% confidence interval (CI):
19%–64%) with a 100% specificity (CI: 86%–100%), while sensitivity and
specificity of absent SSEP responses during the first 24 hrs were 24%(CI:
10%–44%), and 100% (CI: 87%–100%), respectively. The negativepredictive
value for poor outcome of low voltage and iso-electric EEG patterns was 68%
(CI: 50%–81%), compared to 55% (CI: 40%–60%) for bilateral SSEP absence,
both with a positive predictive value of 100% (CI 63%–100% and 59%–100%
respectively). Burst suppression patterns after 24 hrs were also associated with
poor neurological outcome, but not inevitably so.
Conclusions: In patients treated with hypothermia, EEG monitoring during
the first 24 hrs after resuscitation can contribute to the prediction of both good
and poor neurological outcome. Continuous patterns within 12 hrs predicted
good outcome. Iso-electric or low voltage EEGs after 24 hrs predicted poor
outcome with a sensitivity almost two times larger than bilateral absent SSEP
responses.
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Introduction
Mild therapeutic hypothermia (TH) improves the neurological outcome in co-
matose patients after cardiac arrest1,2, nevertheless survival rates remain poor.
In 40%–66% of patients treated with TH after cardiac arrest, consciousness
never returns despite treatment1–5. Early identification of patients with poor
neurological outcome can prevent continuation of futile medical treatment,
decrease Intensive Care Unit (ICU) stay and medical costs, and shorten the
time of uncertainty for the patient’s family. Early and reliable prognostication
is therefore highly relevant, and treating physicians are indeed often confronted
with the question whether continuation of treatment is worthwhile6,7.

However, early prognostication remains challenging, especially since the pre-
dictive values of clinical, biochemical, and electrophysiological parametersof
poor outcome have become uncertain since the introduction of TH8–12. At
present, only a bilateral absent short latency somatosensory evoked poten-
tial (SSEP) response is highly predictive13–15, probably even at 24 hrs after
resuscitation in patients treated with TH3,16. Unfortunately, only a small
proportion of patients with a poor outcome after resuscitation have negative
SSEP responses as the sensitivity is approximately 20%–25%. This results
in continuation of treatment in a significant fraction of patients with eventu-
ally unfavorable recovery, motivating the need for more sensitive predictors.
Clearly these predictors need to have a specificity of 100%, similar to bilateral
absence of the SSEP.

The electroencephalogram (EEG) reflects part of the function of cortical neu-
rons17, which are the most sensitive for ischemia. It was recently found that
absent EEG background reactivity to painful stimulation, was associated with
poor outcome after cardiac arrest, predicting poor outcome with a sensitivity
of 75% and a specificity of 100%10. Following transient cerebral ischemia a
complex series of pathophysiological events occurs, that evolve in time18,19.
Part of these changes and neuronal recovery can be observed withcontinuous
EEG monitoring. Evolution of EEG patterns, starting with the period during
therapeutic hypothermia, may therefore provide clinically relevant information
regarding recovery from postanoxic coma.

We performed a prospective cohort study to explore if continuous EEG moni-
toring and the changes in the EEG dynamics may serve as improved predictors
for neurological outcome in patients treated with TH after cardiac arrest.
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Materials and Methods
Design
From June 2010 to July 2011 we conducted a single center, prospectivecohort
study in patients who were treated with TH after cardiopulmonary resuscita-
tion. The study setting was the 18 bed general and 10 bed thorax intensivecare
unit (ICU) of the Medisch Spectrum Twente, Enschede, the Netherlands. The
Institutional Review Board waived the need for informed consent for EEG
monitoring during ICU stay. However, for additional electrophysiological
and clinical evaluation after discharge from the ICU, local institutional review
board approval and written informed consents were obtained.

Patients
Consecutive adult patients (age>18 yrs), who were resuscitated after a cardiac
arrest, remained comatose, were admitted to the ICU, and received TH were
included. Exclusion criteria were other neurological injuries such as brain
hemorrhages or traumatic head injury, or any known history of severe neuro-
logical disorders, brain surgery or brain trauma.

Treatment
Patients were first evaluated by a cardiologist in the emergency departmentand
treated according to current standard therapy. Patients were then transferred to
the ICU for TH. According to our protocol, comatose survivors are treated
with TH regardless of the initial cardiac rhythm or the location of arrest (in-
hospital or out-of-hospital). Hypothermia of 33◦C was induced and maintained
for 24 hrs by intravenously administering 2 liters of cold saline and by using
cooling pads. Thereafter, patients were passively rewarmed at a maximumof
0.5◦C/hr to normothermia. According to local protocols, propofol and fentanyl
or remifentanil were used for sedation and against shivering, until the body
temperature had reached 36.5◦C. Sedation was aimed at a level equivalent to
a score of−4 (deep sedation) or−5 (unarousable) at the Richmond Agitation
Sedation Scale (RASS)20,21. On indication, a nondepolarising muscle relaxant
(rocuronium) was used intermittently to avoid compensatory shivering. The
decision to give a muscle relaxant was made by the treating physician, and not
based on the EEG. Stable patients who regained consciousness were extubated
when they were able to protect their airway and the airway was patent.
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EEG
EEG recordings were started as soon as possible after the patients’ arrival on
the ICU and continued up to 5 days or until discharge from the ICU. Twenty-
one silver-silverchloride cup electrodes were placed on the scalp according to
the international 10–20 system. Recordings were made using a Neurocenter
EEG recording system (Clinical Science Systems, Voorschoten, the Nether-
lands). For practical reasons, EEG recordings were not started late at night.
Instead, for patients admitted to the ICU after 11 p.m., the recordings were
started the next morning at 7 a.m.

All EEG analyses were performed after the registrations. EEG data playedno
role in actual prognostication of outcome or treatment decisions. However,the
treating physicians were not completely blinded to the EEG to allow treatment
of epileptiform discharges. Treatment of epileptiform discharges was left at
the discretion of the treating physician. Afterwards, 5 min EEG epochs were
automatically selected every hour during the first 48 hrs after resuscitationand
every 2 hrs during the remainder of the registration. All epochs were visually
scored by an experienced electroencephalographer in random order, blinded
to the point in time of the recording and blinded to the patient who the epoch
belonged to. Each epoch was placed in one of the following categories: iso-
electric, low voltage, burst suppression, diffuse slowing, normal, or epilepti-
form discharges. Each epoch could only be classified into one categoryand
the reviewer was allowed to skip the epoch if it contained too many artifacts
for a clear classification. Iso-electric epochs were defined as epochswithout
any visible EEG activity. Low voltage epochs were defined as epochs with
EEG activity below 20µV. Burst suppression was defined by the presence of
clear increases in amplitude (bursts), followed by inter-burst intervals ofat
least 1 sec with low voltage activity (suppressions). Bursts were required to
have EEG amplitudes higher than 20µV, otherwise the epoch was categorized
as low voltage. Diffuse slowing was defined as a continuous EEG pattern with
a dominant frequency below 8 Hz. Epileptiform discharges included seizures
and generalized periodic discharges (GPDs).

Somatosensory Evoked Potential
Daily SSEP measurements were performed during the first 5 days of the ICU
stay or until discharge from the ICU. The SSEP was measured after electrical
stimulation of the right and left median nerve using a bipolar surface electrode
at the wrist. Stimulus duration was 0.3 msecs and stimulus amplitude was
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adjusted until a visible twitch was produced. Two sets of>200 responses were
averaged, band pass filtered between 0.1 Hz and 2.5 kHz, and notch filtered
around 50 Hz. Stimulus frequency was set at 1.7 Hz. Silver-silverchloride cup
electrodes were placed at the elbow, Erb’s point, cervical spine (C5),and 2 cm
posterior to C3 and C4 (C3’ and C4’). Fz was used as a reference electrode.
SSEP recordings were made using a Nicolet Bravo system (Viasys, Houten,
the Netherlands).

Outcome assessment
Standard neurological examination was performed daily during the ICU stay.
Follow-up was performed after 1, 3 and 6 months. The outcome assessment
after 1, 3 and 6 months after resuscitation was always done by the same author
(MCC). At 1 or 3 months, the CPC score was determined during a personal
meeting, or based on a telephone call. The outcome assessment after six
months was always based on a telephone call. The primary outcome measure
was the best score within 6 months on the five point Glasgow-Pittsburgh Cere-
bral Performance Categories (CPC)22. Outcome was dichotomized between
“good” and “poor”. A “good” outcome was defined as a CPC score of 1or 2
(no or moderate neurological disability), and a “poor” outcome as a CPC score
of 3, 4, or 5 (severe disability, comatose or death).

Statistical Analysis
Collected baseline characteristics include age, sex, weight, location of cardiac
arrest (in hospital versus out of hospital), cause of cardiac arrestand initial
cardiac rhythm. Body temperature and drug registration during ICU stay were
evaluated as well.

The following variables were compared between the groups of patients with a
good neurological (CPC 1–2) outcome and poor neurological (CPC 3–5) out-
come: Age, sex, percentage of out of hospital cardiac arrest, causeof cardiac
arrest, initial rhythm, start time of EEG recording, duration of EEG recording
and the maximum dose of sedative and analgesic drugs during the first 24 hrs
after cardiac arrest. Statistical analysis was performed using a PearsonChi-
Square test or a Fisher’s Exact test for the parameters that were categorical. A
Pearson Chi-Square was used when no subgroup had an expected count less
than 5, else a Fisher’s Exact test was used. An independentt-test or a Mann-
Whitney U test was applied when the parameters were continuous. A Mann-
Whitney U test was performed in cases were the parameter was not normally
distributed.
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To evaluate the value of EEG in early prognostication, sensitivities, specifici-
ties, positive and negative predictive values, and their 95% confidenceintervals
(95% CI) were calculated for the different EEG patterns at 12 and 24 hrs af-
ter cardiac arrest. Those were compared to the sensitivity and specificity of
absent short-latency (N20) SSEP responses within 24 hrs for predicting poor
neurological outcome. Note that all mentioned time periods start at the time of
cardiac arrest.

Results
Sixty consecutive patients were included in the study. Of these, four patients
were excluded in a later stage, two because of intracerebral hemorrhages, one
because of technical problems during the EEG registration and the last one
because of death within the first hour of registration. None of the remaining
56 patients was lost during follow-up. Twenty-seven patients (48%) had a
good neurological outcome (best CPC score within 6 months≤2). Two of
them died within the first month due to cardiac failure, and one suffered from a
cerebral vascular accident after he recovered and was transferred to a nursing
home. The other 24 patients with good neurological were all able to return
to their homes and were still alive after 6 months. Poor outcome occurred
in 29 patients, where one patient had severe neurological disabilities (CPC
3) before he died from cardiac failure; the remaining twenty-eight patients
never regained consciousness (CPC 4–5) and died within the first month.An
overview of the patient and measurement characteristics is given in Table 2.1.

SSEP during hypothermia
Bilateral absence of the cortical N20 SSEP response was present in seven
patients within the first 24 hrs (Table 2.2A). All of them had a poor outcome
and in none of them the N20 returned in later SSEP measurements. The sen-
sitivity of bilateral absent N20 responses during hypothermia for predicting
poor neurological outcome was 24% with a specificity of 100%. The negative
predictive value of a bilateral absent SSEP was 55%, with positive predictive
value of 100% (Table 2.3).

EEG patterns
An overview of the trends in EEG patterns in patients with poor and good
neurological outcome is given in Figure 2.1. Some EEG epochs were excluded
from analysis because of artifacts, this occurred in 4% of the epochs.
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Table 2.1: Comparison between patient characteristics, measurement characteristics and
sedation levels between the patients with good neurological outcome and poor neurological
outcome.

Poor neurological
outcome (Cerebral

Performance
Category score 3–5)

Good neurological
outcome (Cerebral

Performance
Category score 1–2) p

Number of patients 29 27
Number of male 21 (72%) 17 (63%) .45
Age (yrs) 70 (std 12)

(range: 44–86)
66 (std 11)

(range: 45–88)
.17

Number of out-of-hospital cardiac
arrest

23 (79%) 26 (96%) .10

Initial Rhythm .001
Ventricular fibrillation 17 (59%) 24 (89%)
Asystole 6 (21%) 0 (0%)
Bradycardia 5 (17%) 0 (0%)
Unknown 1 (3%) 3 (11%)

Presumed cause of cardiac arrest .004
Cardiac 16 (55%) 25 (93%)
Other origin 6(21%) 0 (0%)
Unkown 7 (24%) 2 (7%)

Start of EEG registration after cardiac
arrest (hr)

6 (std 3)
(range: 2–13)

7 (std 4)
(range: 2–21)

.51

Duration of EEG registration (hrs) 54 (std 38)
(range: 2–136)

75 (std 21)
(range: 38–108)

.01

Patients sedated with propofol 28a (97%) 27a (100%) 1.00
Propofol dose (mg/hr/kg) 2.6 (std 1.1)

(range: 1.0–6.2)
2.9 (std 0.9)

(range: 0.2–4.8)
.33

Patients treated with fentanyl 17 (58%) 16 (59%) .96
Fentanyl dose (µg/hr/kg) 1.7 (std 1.1)

(range: 0.7–4.7)
1.9 (std 0.6)

(range: 0.7–2.7)
.07

Patients treated with remifentanil 12 (41%) 12 (44%) .82
Remifentanil dose (µg/hr/kg) 5.0 (std 3.2)

(range: 1.9–13.3)
8.5 (std 4.7)

(range: 2.5–14.7)
.07

a In contrast to the sedation protocol, one patient with poor neurological outcome was sedated
with midazolam (37µg/hr/kg) instead of propofol. In both groups two patients received
midazolam (27.4–63.8µg/hr/kg) additional to the sedation with propofol.

Within 12 hrs after resuscitation, 44% of the patients with good neurological
outcome showed a continuous pattern, while at this stage none of the patients
with poor neurological outcome showed a continuous pattern (Table 2.2B).
Therefore, the presence of a continuous EEG pattern after 12 hrs could be
used to reliably predict good neurological outcome (Table 2.3).
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Table 2.2: Somatosensory evoked potential results and electroencephalogram patterns for
patients 12 and 24 hrs after resuscitation.

Time After
Resusci-

tation
(hrs)

Poor neurological
outcome (Cerebral

Performance
Category score 3–5)

Good neurological
outcome (Cerebral

Performance
Category score 1–2)

A: SSEP: bilateral absent N20 vs. present N20
SSEP N20 absent <24 7 0
SSEP N20 present <24 22 27

B: EEG after 12 hrs: iso-electric, low voltage or burst suppressionEEG vs. continuous
EEG patternsa

EEG iso-electric or low-
voltage or burst suppression

12 26 13

EEG continuous 12 0 10
C: EEG after 24 hrs: iso-electric or low voltage EEG vs. burst suppression or conti-

nuous EEG patternsb

EEG iso-electric or low-
voltage

24 8 0

EEG burst suppression or
continuous

24 12 26

D: EEG after 24 hrs: iso-electric, low voltage or burst suppressionEEG vs. continuous
EEG patternsb

EEG iso-electric or low-
voltage or burst suppression

24 19 1

EEG continuous 24 1 25

EEG, electroencephalogram; SSEP, somatosensory evoked potential.
a Three patients with poor neurological outcome were missing: one alreadydied, two due
to EEG artifacts. Four patients with good neurological were missing: two because the EEG
registration was started after 12 hrs, two due to artifacts;b Nine patients with poor neurological
outcome were missing: six already died, two due to artefacts and one due tologistical
problems. One patient with good neurological was missing due to logistical problems.

Within 24 hrs after resuscitation, 40% of the patients with poor neurological
outcome still showed an iso-electric or low-voltage EEG pattern, while none
of the patients with good neurological outcome showed one of these patterns
at this stage (Table 2.2C). The sensitivity of low voltage or iso-electric EEG
patterns for predicting poor neurological outcome after 24 hrs was 40% with
a specificity of 100% (Table 2.3). The negative predictive value was 68%and
the positive predictive value 100%.

All patients with good neurological outcome, except one, (95%) showed im-
provement towards a continuous slowed pattern within 24 hrs after resuscita-
tion (Table 2.2D). An example is shown in Figure 2.2. In contrast, all patients
with poor neurological outcome, except one, (96%) showed burst suppression,
low voltage, or iso-electric EEG patterns during the first 24 hrs after resuscita-
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Table 2.3: Sensitivity, specificity and predictive values for early prediction of goodand poor
neurological outcome.

Time after
resusci-
tation
(hrs) Predicting

Sensitivity
(95% CI)

Specificity
(95% CI)

Positive
predicting

value
(95% CI)

Negative
predicting

value
(95% CI)

Somatosensory
evoked
potential
N20 absent

<24 Poor
outcome

24
(10–44)

100
(87–100)

100
(59–100)

55
(40–60)

EEG continuous 12 Good
outcome

43
(23–66)

100
(86–100)

100
(69–100)

67
(50–81)

EEG iso-electric
or low-voltage

24 Poor
outcome

40
(19–64)

100
(86–100)

100
(63–100)

68
(51–82)

EEG iso-electric
low-voltage
or burst
suppression

24 Poor
outcome

95
(75–100)

96
(80–100)

96
(80–100)

95
(75–100)

CI, Confidence interval; EEG, electroencephalogram.
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Figure 2.1: Trend in EEG patterns for patients with different neurological outcomes. Top:
patients with good neurological outcome (Cerebral Performance Category [CPC] score 1–2).
Bottom: patients with poor neurological outcome (3–5). In all patients with a continuous EEG
pattern after 12 hrs (diffuse slowing or normal, top panel), outcome was good. In all patients
with iso-electric or low voltage EEG after 24 hrs (bottom panel), outcome waspoor. Burst-
suppression at 24 hrs is also associated with poor outcome, but does not reach a specificity of
100%.

tion (Table 2.2D). In eight of them, the EEG improved to a continuous pattern
in a later stage within 48 hrs. Six of those patients showed a low voltage
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Figure 2.2: Example of the evolution of electroencephalogram (EEG) patterns of patient
number 15 with a good neurological outcome (Cerebral PerformanceCategory score 1). The
EEG pattern is improving from a low voltage and burst suppression patternto a diffuse slowed
pattern before the end of the hypothermia period. From top to bottom: (I) Three examples of the
EEG at different points in time to demonstrate the evolution of the EEG patterns over time. (II)
Trend line of EEG pattern based on visual interpretation of 5 min epochs. (Norm, normal,Slow,
diffuse slowed,Epilept, epileptiform discharges,Burst, burst suppression,Low, low voltage,
Iso, iso-electric). (III) Body Temperature. (IV) Use of sedative and analgesic drugs. EEG,
electroencephalogram

EEG in the beginning of the registration, and two patients showed a burst
suppression pattern. A typical example is shown in Figure 2.3. In all other
patients the EEG did not become continuous even after 72 hrs, for example
patient 13 in Figure 2.4.

Table 2.3 summarizes the relevant sensitivity, specificity and predictive value
rates of the different EEG patterns and SSEP responses for predicting for pre-
dicting good (CPC score 1–2) and poor outcome (CPC 3–5) within 24 hrs after
resuscitation.
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Figure 2.3: Trend in EEG of patient number 24 with poor neurological outcome (Cerebral
Performance Category score 5). In this patient the EEG is improving from a burst suppression
to a continuous, but diffuse slowed pattern, however not within the first 24 hrs. (Norm, nor-
mal,Slow, diffuse slowed,Epilept, epileptiform discharges,Burst, burst suppression,Low, low
voltage,Iso, iso-electric).

Presence of epileptiform activity
In eight patients (14%) the EEG was classified as seizure activity or gen-
eralized periodic discharges. In seven patients the discharges continued for
several hours and despite treatment with anti-epileptic drugs in five of them
(phenytoin; in two cases levetiracetam was given additionally). All those
seven patients had poor neurological outcome. In five of those patients the
epileptiform discharges followed after a burst suppression pattern, thelast two
patients showed a continuous pattern before the GPDs occurred. One patient
with generalized periodic discharges had a good outcome, in this patient the
discharges were self-limiting within 2 hrs and anti-epileptic drugs were not
given. This patient already showed a continuous pattern before the start of the
generalized periodic discharges.
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Figure 2.4: Trend in EEG of patient number 13 with poor neurological outcome (Cerebral
Performance Category score 5). In this patient the EEG never improved to an EEG pattern better
than burst suppression. (Norm, normal,Slow, diffuse slowed,Epilept, epileptiform discharges,
Burst, burst suppression,Low, low voltage,Iso, iso-electric).

In four additional patients (7%) the EEG showed a burst suppression pattern,
with the bursts consisting of sharp waves. In two patients, rhythmic move-
ments of the eyes and mouth were present during the bursts, indicating a
myoclonic status epilepticus. All these four patients had poor neurological
outcome, despite treatment with phenytoin.

Three other patients with continuous, diffuse slowed EEG patterns showed
minor epileptiform abnormalities. In one of them rhythmic activity of the
feet, shoulder and eyes was present. All these three patients responded well
to treatment with anti-epileptic drug and had good neurological outcome.
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Discussion
In this study we explored the value of continuous EEG monitoring for the early
prediction of neurological outcome in patients after cardiac arrest treatedwith
hypothermia. In our study population, 27 out of 56 patients (48%) obtained
good neurological outcome (CPC 1–2), which is within the 34%–55% range
mentioned in other studies1–4. The first 24 hrs of EEG after resuscitation were
the most useful in the prediction of, both good and poor neurological outcome.

Our SSEP findings are comparable to the work of Bouwes et al.3. In their study
of 77 patients, bilateral absence of the cortical N20 responses of mediannerve
SSEP performed during mild hypothermia 24 hrs after resuscitation predicteda
poor neurological outcome with a sensitivity of 27% and a specificity of 100%.
However, in literature one patient treated with TH after cardiac arrest, with
bilateral absent N20 responses at day 3 and with good neurological outcome
(CPC 1) is described9. Despite this single case, pooled analysis of recent SSEP
studies on hypothermia patients3,9,10,16gives a very low false positive rate of
1.2%23,24.

After 12 hrs, 44% of the patients with good neurological outcome showed
a continuous EEG pattern, while none of the patients with poor neurological
outcome showed continuous EEG patterns. The evolution from absent cortical
activity to an intermittent pattern and finally to a continuous pattern in patients
with good neurological outcome was already described in 1984 by Jørgensen
and Malchow-Møller25–27. They studied patients after cardiac arrest with no
detectable cortical activity in the initial EEG. These patients were not treated
with therapeutic hypothermia and were typically unsedated. In their study,
patients with good neurological outcome and absent EEG activity measured
directly after the cardiac arrest, showed a return of cortical activity within10
mins to 8 hrs. In these patients the EEG activity could occur intermittently
for as long as 16 hrs; thereafter the activity became continuous in all patients
with good neurological outcome25. In contrast, patients with poor neurological
outcome showed slower or no recovery in their EEG patterns26,27.

The sensitivity for predicting poor outcome of low voltage and iso-electric
EEG patterns 24 hrs after resuscitation was 40%, with a specificity of 100%.
This is significantly larger than the SSEP at 24 which had a sensitivity of 24%
and specificity of 100%. This difference in sensitivity most likely results from
the larger vulnerability of cortical pyramidal cell synaptic function than the
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thalamocortical (TC) synapses in ischemia: pyramidal cell synaptic function
is mainly reflected by the EEG, while SSEP mainly evaluates the TC synaptic
function28.

A burst suppression pattern after 24 hrs was also associated with poor neuro-
logical outcome, however not at a specificity of 100%: the sensitivity was 95%
and the specificity was 96%. In some patients with poor neurological outcome
the burst suppression pattern improved to a continuous EEG pattern at a later
stage. This illustrates that the time scale of improvement of the EEG pattern is
a relevant factor in the prognosis. Further differentiation of burst suppression
patterns may be relevant in predicting poor outcome, as large differences in
the type of burst suppression patterns exist, including more specific patterns
associated with a poor outcome29. This was however not explored further in
this study.

Our findings support earlier studies in patients not treated with TH, which
report that the combined group of iso-electric, low voltage and burst suppres-
sion EEG patterns is associated with poor neurological outcome7,30. More
recently, in a study of Rundgren et al., 95 cardiac arrest patients treatedwith
therapeutic hypothermia were studied with continuous EEG as well. In their
study, a simplified 2 channel amplitude integrated EEG was used, which is
more easy to apply in the ICU and shortens the time of visual interpretation5,31.
Their study used a similar cooling regimen, except that some patients were
cooled using intravenous instead of external cooling. Sedation levels with
propofol during hypothermia were also similar to our study. It was shown that
an initial flat pattern had no prognostic value while a continuous EEG pattern
at the start of registration or at the beginning of normothermia was associated
with good neurological outcome5,31. Our findings confirm these results. In
addition, we also studied the EEG evolution over time, showing that the EEG
patterns at 12 or at 24 hrs were more informative than the initial EEG and
the EEG at normothermia (see Figure 2.1). A recent study of Rossetti et al.10

also reported that “prolonged burst suppression” activity is associated with
poor neurological outcome in patients treated with hypothermia. However, a
detailed comparison between their and our findings is difficult, as not in all
cases it is clear at which moment after CA their EEGs were evaluated. In addi-
tion, different sedatives were used in their study compared to ours (midazolam
instead of propofol).
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Epileptiform discharges or burst suppression patterns containing sharp waves
or associated with epileptiform activity were present in 21% of the patients.
All those epileptiform discharges were associated with poor outcome, except
for one patient (with self-limiting epileptiform discharges). These findings are
similar to other studies, which also concluded that both generalized periodic
discharges and a status epilepticus are associated with poor outcome, but not
invariably so32–36. The background EEG pattern prior to the development of
the status epilepticus might have a prognostic value in these patients5. Minor
epileptiform abnormalities on a continuous background EEG were presentin
three patients, those three patients responded to anti-epileptic drugs and recov-
ered well.

In our study, we tried to identify early predictors during the first 24 hrs using
ongoing EEG activity. Clinical scores, in particular the Glasgow coma score,
were not used in this analysis, as these are highly unreliable during the first
24 hrs as patients were sedated and treated with therapeutic hypothermia. Fur-
thermore we did not include initial rhythm, cause of cardiac arrest, location
of cardiac arrest, comorbidities, or other scores such as the APACHE score
in the statistical modeling. It is well known that any of these factors affects
neurological recovery as well4,37. However, in this study we primarily focused
on the predictive value of the EEG on its own, as the EEG directly reflects
cortical neuronal function17, known to be most sensitive to ischemic injuries.

Although all patients were treated with sedative drugs during the period of
hypothermia according to the same treatment protocol, differences in sedation
levels may have influenced the EEG patterns. However, no significant dif-
ference in sedation level between the group with good neurological outcome
and poor neurological outcome was found (Table 2.1). We note however, that a
trend was found in the dosages of fentanyl and remifentanil between the groups
of patients with poor and good neurological outcome, with both drugs givenin
a higher dose in patients with good neurological outcome. Furthermore, it is
unlikely that the most severe EEG patterns (iso-electric and low voltage) were
caused by the use of propofol, fentanyl or remifentanil in the doses used, as the
EEG is not suppressed at these doses, and typically only shows moderateslow-
ing38. Other institutions may have different sedation regimens, which possibly
could affect the EEG patterns. Therefore, it is presently unclear to what extent
our results to patients treated with higher doses or different sedatives can be
extrapolated.
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A possible shortcoming of this study was that the treating physicians were not
completely blinded to the EEG and SSEP results. This may have led to “self-
fulfilling prophecies”. According to current treatment guidelines, treatment
was stopped if the N20 response was bilaterally absent at day three. Further-
more, some patients died within the first week after cardiac arrest for other
reasons, for example due to a second cardiac arrest. We cannot exclude that
complete neurological recovery could have occurred in these patients. Further-
more, it should be noted that this was a single center study which may have had
an effect on the visual analysis of the EEGs. Given however that the categories
were defined in a very clear manner, it is unlikely that the interpretation of the
patterns were significantly biased. Another limitation might be that we only
used 5 min epochs of EEG data every hour, instead of the complete registration.
However, it is unlikely that this had a significant influence on our results, since
the EEG patterns typically evolved over hours.

In closing, this study provides additional support for the relevance of EEG
monitoring in the ICU in patients treated with TH. Clearly, future studies are
needed, preferably multi-center studies, to confirm these results and to tighten
the confidence intervals, in particular of the specificity. In addition, as visual
analysis of EEG monitoring is time consuming and can only be done by ex-
perienced electroencephalographers, it will become crucial to use automatic
classification techniques39 or to only extract the most important quantitative
EEG variables40.

Conclusions
This prospective study show that EEG monitoring during the first 24 hrs after
resuscitation can contribute in the prediction of both good and poor neuro-
logical outcome. For successful recovery, the time scale during which EEG
improves towards a continuous pattern has to occur within the order of 24 hrs.
In our study, an iso-electric or low voltage EEG pattern 24 hrs after resuscita-
tion was associated with poor neurological outcome with a sensitivity that was
almost two times larger than bilateral absence of the N20 SSEP response.
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Abstract
Objective: To assess the incidence, prognostic significance, and quantified
EEG characteristics of “burst-suppression with identical bursts” and to discuss
potential pathophysiological mechanisms.
Methods: Burst-suppression EEGs were identified from a cohort of 101 co-
matose patients after cardiac arrest, and from our complete EEG database of
9600 EEGs, since 2005. Patterns with and without identical bursts were clas-
sified visually by two independent observers. Of patients after cardiac arrest,
outcomes were assessed at three and six months. Identical and non-identical
burst-suppression patterns were compared for quantified EEG characteristics,
including cross-correlation of burstshapes, and clinical outcome. Quantitative
analysis of burstshape was applied to the first 500ms of each burst.
Results: Of 9701 EEGs, 240 showed burst-suppression, 22 with identical
bursts. Identical bursts were observed in twenty (20%) of 101 comatosepa-
tients after cardiac arrest between a median of 12 and 36 hours after the arrest,
but not in the six patients with other pathology than cerebral ischemia, or the
183 with anesthesia induced burst suppression. Inter-observer agreement was
0.8 and disagreement always resulted from sampling error. Burst-suppression
with identical bursts was always bilateral synchronous, amplitudes were higher
(128 vs. 25µV, p=0.0001) and correlation coefficients of burstshapes were
higher (95%>0.75 vs. 0%>0.75, p<0.0001) than in burst-suppression without
identical bursts. All twenty patients with identical bursts had a poor outcome
versus 10 (36%) without identical bursts.
Conclusion: “Burst-suppression with identical bursts” is a distinct pathological
EEG pattern, which in this series only occurred after diffuse cerebral ischemia
and was invariably associated with poor outcome.
Significance: In comatose patients after cardiac arrest, “burst-suppression with
identical bursts” predicts a poor outcome with a high specificity.
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Introduction
Burst-suppression in the electroencephalogram (EEG) is characterized by high
amplitude events (bursts) alternated by periods of low or absent activity (sup-
pressions)1,2. This pattern can be physiological, for instance during early
development, or pathological, for example in almost half of comatose patients
within the first 48 hours after cardiac arrest3. Also, burst-suppression can be
induced by anesthetics4. Under pathological conditions, it is usually associ-
ated with a poor prognosis. However, in a previous prospective cohort study,
we found that 18% of patients with burst-suppression at 12 or 24 hours after
cardiac arrest had a good functional outcome3.

Characteristics to classify burst-suppression patterns into subgroups with pre-
sumed differences in clinical significance include the duration of the bursts
and interburst intervals, maximum peak to peak voltage, area under the curve,
and the ratio of power in high versus low frequencies5. For example, longer
suppressions were associated with poorer recovery in patients with postanoxic
coma6. Still, predictive values for poor outcome remain too low to allow
treatment decisions.

Extreme similarity of burstshape is a distinct feature of some burst-suppression
patterns. Herewith, subsequent bursts in a particular channel are almost “pho-
tographic” copies. Patterns with this particular characteristic have been spo-
radically reported and considered a rarity7,8. However, through standard use
of continuous EEG in comatose patients on the intensive care, we have learned
that these occur relatively frequent within the first days after acute diffuse
cerebral ischemia.

Here we report on the incidence and prognostic significance of “burst-
suppression with identical bursts” and quantify its EEG characteristics. We
show that this is a distinct pathological EEG pattern that only occurs after
diffuse cerebral ischemia and is invariably associated with a poor outcome in
these patients. Since both morphology and clinical significance apparently
differ from other burst-suppression patterns, we propose to label the pattern as
“burst-suppression with identical bursts”. We discuss potential pathophysio-
logical mechanisms.
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Methods
Burst-suppression EEGs
We identified EEGs with bursts-suppression in two ways. First, we took these
from comatose patients after cardiac arrest that were included in a prospective
cohort study on the predictive value of continuous EEG on outcome between
June 1st 2010 and September 31st 2012. Design, eligibility criteria, and main
outcomes of the first 60 patients included in this study have been published
previously3. In brief, since June 1st 2010, consecutive adult comatose patients
after cardiac arrest, treated with hypothermia, were included within twelve
hours after the arrest to undergo continuous EEG monitoring on the intensive
care unit. Monitoring continued until patients regained consciousness, died, or
up to five days. For this study, the institutional review board waived the need
for informed consent.

Second, we identified burst-suppression EEGs from the Medisch Spectrum
Twente’s, complete hospital database. Here, since January 2005, all EEGs
are systematically categorized. Hence, EEGs that meet the criteria for burst-
suppression are labeled as such. We took all EEGs from patients aged 18years
or older, recorded between January 2005 and December 2012 and labeled as
“burst-suppression”.

EEG recordings
For all recordings, electrodes were applied according to the international 10–
20 system, using 19 channels. Electrode impedances were kept below 5 kΩ.
Sampling frequency was set to 256 Hz. A Neurocenter EEG system (Clinical
Science Systems, the Netherlands) was used with a TMS-i full band EEG
amplifier (TMS international, the Netherlands) or a BrainLab EEG recording
system (OSG BVBA, Belgium) was used. Data were stored to disk for off-line
analysis.

Visual analysis of burst-suppression patterns
Burst-suppression was defined as any pattern with high amplitude events
(>20 µV) alternated with periods of low (<10 µV) or absent EEG activity
of at least one second. After visual identification of burst-suppression pat-
terns, these were visually sub-classified into patterns with identical bursts and
patterns without identical bursts. Bursts were considered identical, if the first
500 ms were identical, irrespective of amplitude or subsequent duration of
bursts or inter-burst intervals.
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Of comatose patients after cardiac arrest, this visual analysis was done inde-
pendently by two investigators (MT-C, MvP) in automatically selected epochs
of five minutes at 12 and 24 hours after cardiac arrest. These investigators were
blinded for the patients’ clinical condition during the registration, the record-
ing time of the epoch, and the patient’s outcome. In case of disagreement,
the final classification was decided by consensus in consultation with a third
observer (JH), who had access to the complete recordings, but was blinded for
the patients’ outcome. All EEG analyses were done after the registrations and
EEG played no role in initial treatment decisions. All other burst-suppression
EEGs from the hospital data base were reviewed by a single observer (MvP),
blinded for the underlying condition and the patient’s outcome.

Quantitative analysis of burst-suppression patterns
Quantitative analysis of correlation between shapes of subsequent bursts, burst
amplitudes, and durations of the interburst intervals was done for EEGs from
comatose patients after cardiac arrest. For this purpose, the initiation of 50
subsequent bursts was annotated manually in a particular bipolar channelin
each EEG. This was typically done at twelve or 24 hours after the arrest. Corre-
lations between the burstshapes (truncated to a duration of M=127 samples i.e.
500 ms) were calculated using the cross-correlation over a range of lags(from
–maxlag to maxlag, with maxlag=M–1). Subsequently, the maximum value
of the 2*maxlag+1 values was determined. This resulted in 1225 different
correlations for each patient, from which the mean correlation coefficient per
patient was determined. In addition, the mean and maximum amplitude of
the first 500 ms of the 50 bursts were calculated. Inter-burst intervals were
defined by the time difference between the initiation of bursts. All routines
were implemented in Matlab.

Treatment
Comatose patients after cardiac arrest were treated according to current stan-
dard therapy, as described previously3. In short, hypothermia of 33◦C was
induced as soon as possible after the arrest and maintained for 24 hoursby
intravenously administered cold saline and cooling pads. Propofol was used
for sedation to a level of−4 or−5 at the Richmond Agitation Sedation Scale
and discontinued after normothermia had been reached, if possible. Fentanyl
or Remifentanil was used against shivering. Of patients other than those in-
cluded in the prospective cohort study, medication during the registration was
not prospectively collected.



3

36 Chapter 3

Outcome assessment
Of comatose patients after cardiac arrest, that had been included in our pro-
spective cohort study, outcome assessment was done at three and six months
by telephone (MT-C). The primary outcome measure was the best score on
the Cerebral Performance Category (CPC) within six months dichotomized
between “good” (CPC 1 or 2) and “poor” (CPC 3, 4, or 5). Secondary outcome
measures included mortality3. Of patients other than those included in the
prospective cohort study, outcome was not prospectively assessed.

Statistical analysis
From all patients with burst-suppression EEGs, the proportions of burst-
suppression patterns with and without identical bursts were calculated foreach
underlying condition. All further analyses were done for the subgroupof
patients that had been included in our cohort study on the diagnostic value of
continuous EEG in comatose patients after cardiac arrest. Inter-observer agree-
ment for the appointment of “identical bursts” between the two independent
observers was analyzed with Cohen’s Kappa. Identical burst-suppression pat-
terns were compared with other burst-suppression patterns with regard toclin-
ical outcome and quantitative EEG characteristics (bilateral synchrony, ampli-
tude, duration of inter-burst intervals, and correlation of burstshapes). Data are
presented as proportions, or means± standard deviations (SD). Between-group
differences were analyzed with Fisher’s exact or Student’st-test, if appropriate.
For burst-suppression with or without identical bursts, sensitivity, specificity,
positive predictive value (PPV), and negative predictive value (NPV)for the
prediction of poor outcome were calculated, including corresponding 95%
confidence intervals (CIs).

Results
Incidence of burst-suppression with identical bursts
From our cohort of 101 comatose patients after cardiac arrest, 48 (48%) had
burst-suppression patterns at twelve or 24 hours. Twenty (20%) had burst-
suppression with identical bursts on visual analysis. Of all other 9600 EEGs
in our database, 192 showed burst-suppression. Underlying conditions varied.
Two had diffuse cerebral ischemia from other causes than cardiac arrest, both
with identical bursts. Burst-suppression with identical bursts was not seen in
the six patients with other pathology than cerebral ischemia, or in the 183
patients under anesthesia (Table 3.1). Three examples of burst-suppression
without identical bursts are shown in Figure 3.1, and three examples of burst-
suppression with identical bursts in Figure 3.2.
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Table 3.1: Causes of burst-suppression patterns with and without identical bursts.

Cause of burst-suppression Identical bursts
Yes No

Cerebral ischemia
Coma after cardiac arrest 20 28
Drowning 1
Hanging 1
Cerebral infarction 1

Other causes
Traumatic brain injury 3
Therapeutic hypothermia 1
Propofol or sevoflurane anesthesia 183
Meningitis 1
Craniotomy 1

Total 22 218

Timing of burst-suppression with identical bursts
Baseline characteristics of comatose patients after cardiac arrest with burst
suppression are summarized in Table 3.2. In these patients, burst-suppression
with identical bursts was observed between a median of 12 (range 3–23) and
36 (range 15–53) hours after the arrest. These patterns were followed by burst-
suppression without identical bursts in twelve patients (60%, subsequently
low voltage in four), generalized periodic discharges in four (20%), epileptic
discharges in one (5%), and low voltage in one (5%). In two patients, burst-
suppression with identical burst was present up to death. Burst-suppression
without identical bursts disappeared more gradually after approximately me-
dian 32 (range 17–72) hours after cardiac arrest. This pattern was followed
by continuous slowing in 22 patients (79%, subsequently generalized periodic
discharges in seven), generalized periodic discharges is three (11%), and low
voltage in one (4%). In one patient, burst-suppression without identical burst
was present up to death.

Inter-observer agreement
Cohen’s Kappa for inter-observer agreement of identical vs. non-identical
bursts was 0.8. Disagreement always resulted from selection of the observed
epoch: either the inter-burst interval was longer than five minutes, so thatbursts
fell outside the epoch, or bursts were only partly represented within the epoch.
Consensus was always readily reached by looking outside the epoch.
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A

B

C

Figure 3.1: Left panels: illustration of EEGs of three comatose patients after cardiac arrest (A-
C) showing “common” burst-suppression, without identical bursts. These patients were sedated
with propofol 1 to 2.5 mg/kg/h. The individual EEG epochs have a duration 5 s. The mean
interburst interval is 5.0 s (A), 9.8 s (B), or 11.8 s (C). Vertical bar: 100 µV. Filter settings
0.5-25 Hz. Right panels: histograms of correlation coefficients of burst-shape (r): in all three
patients r<0.75.
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A

B

C

Figure 3.2: Left panels: illustration of EEGs of three comatose patients after cardiac arrest
(A-C) showing “burst-suppression with identical bursts”. A: recording from an eighty years
old patient sedated with propofol 1 to 2.5 mg/kg/h; inter-burst interval 19± 9 s. B: 80 years
old patient sedated with propofol 1 to 2.5 mg/kg/h; inter-burst interval 65± 64 s. C: 68 years
old patient without sedative medication at normothermia. inter-burst interval 60± 23 s. The
correlation extends over more than three seconds. The individual EEGepochs have a duration
of 5.0 s. Vertical bar: 100µV. Filter settings 0.5–25 Hz. Right panels: histograms of correlation
coefficients of burst-shape (r): in all three patients r>0.85.
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Table 3.2: Baseline characteristics of comatose patients after cardiac arrest with burst-
suppression EEG with and without identical bursts.

Identical bursts
Yes (n=20) No (n=28) p value

Age (years) 67 65 0.8
OHCA 17 (85%) 25 (89%) 0.7
Presumed cause of cardiac arrest 0.1

Cardiac 10 (50%) 20 (71%)
Other 6 (30%) 2 (7%)
Unknown 4 (20%) 6 (22%)

Initial rhythm 0.02
VF 8 (40%) 21(75%)
Asystole 8 (40%) 2 (7%)
Bradicardia 3 (15%) 2 (7%)
Unknown 1 (5%) 3 (11%)

Propofol treatment 19 (95%) 28 (100%) 0.4
Propofol dosage (mg/kg/h) 2.5± 1.2 3.2± 1.2 0.05
Midazolam treatment 2 (10%) 6 (21%) 0.4
Midazolam dosage (µg/kg/h) 4.1± 12.6 11.9± 26.4 0.2
Fentanyl treatment 10 (50%) 24 (86%) 0.01
Fentanyl dosage (µg/kg/h) 0.9± 1.2 1.4± 0.8 0.06
Remifentanil treatment 10 (50%) 5 (18%) 0.03
Remifentanil dosage (µg/kg/h) 3.9± 2.2 5.2± 3.9 0.4

OHCA indicates out of hospital cardiac arrest; VF, ventricular fibrillation;dosage, maximum
dosage within the first 24 hours.

Quantitative analysis
Quantitative EEG characteristics of comatose patients after cardiac arrestwith
burst-suppression with and without identical bursts are illustrated in Fig-
ures 3.1 and 3.2 and summarized in Table 3.3. Burst-suppression with identi-
cal bursts was more often bilateral synchronous than burst-suppression with-
out identical bursts, amplitudes were higher, and correlation coefficients of
burstshapes were higher. The only patient with identical bursts according to
visual analysis, who still had a correlation coefficient lower than 0.75, had
identical bursts of very short duration (∼200 ms). In this patient, the time
interval in which correlation was determined (500 ms) was probably too long
to adequately measure correlation coefficients between the bursts. Although
quantitative analysis was restricted to the first 500 ms, visual analysis revealed
identical burstshapes extending beyond 500ms, in bursts with durations longer
than 500ms. In burst-suppression with identical bursts, the interburst-intervals
were invariably flat and all transitions between bursts and interburst-intervals
were abrupt.
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Table 3.3: Characteristics of (patients with) burst-suppression with and without identical
bursts.

Identical bursts on visual analysis
Yes (n=20) No (n=28) p value

Mortality 20 (100%) 10 (36%) <0.0001
Bilateral synchrony 20 (100%) 18 (64%) 0.03
Mean amplitude (µV) 26.4± 16.0 6.5± 3.8 <0.0001
Maximal amplitude (µV) 127.8± 104.5 24.9± 14.2 0.0001
Mean inter-burst intervals (s) 53± 58 76± 339 0.8
Mean correlation coefficient of burstshape 0.85± 0.08 0.49± 0.08 <0.0001
Correlation coefficient of burstshape> 0.75 19 0 <0.0001

In number (%) of patients or mean± standard deviation. Amplitude indicates amplitude in the
first 500 ms of the burst.

Table 3.4: Sensitivity, specificity, and predictive values of burst-suppression withor without
identical bursts within 48 hours after cardiac arrest for prediction of poor outcome.

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

Burst-suppression with
identical bursts

40%
(27%–55%)

100%
(91%–100%)

100%
(80%–100%)

63%
(51%–73%)

Burst-suppression without
identical bursts

20%
(11%–34%)

65%
(50%–77%)

36%
(20%–56%)

45%
(34%–57%)

Burst-suppression with or without identical bursts has been identified visually; 95% CI
indicates 95% confidence interval; PPV, positive predictive value; NPV,negative predictive
value.

Outcome
All twenty patients with identical bursts (100%) had a poor outcome vs. ten
(36%) without identical bursts. Patients with a poor outcome never regained
consciousness and all died. Sensitivity, specificity, PPV, and NPV of burst-
suppression with and without identical bursts based on visual analysis for
prediction of poor outcome are given in Table 3.4.

Discussion
We report on a distinct EEG burst-suppression pattern, which we propose to
label “burst-suppression with identical bursts”. This pattern was present in
twenty percent of our patients after diffuse cerebral ischemia, but was not seen
in the six patients with other pathology than cerebral ischemia, or in the 183
patients under anesthesia. In burst-suppression with identical bursts, burst-
shapes are highly similar and bilateral synchronous. Inter-burst intervals are
variable in duration and invariably flat. Inter-observer agreement of identical
vs. non-identical bursts was high (κ=0.8), and disagreement always resulted
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from sampling error. All patients with burst-suppression with identical bursts,
but not all patients with other burst-suppression patterns, died. This indicates
that burst-suppression with identical bursts represents irreversible ischemic
network damage of the brain predicting poor outcome with a specificity and
PPV of 100%.

Burst-suppression patterns are characterized by oscillations with two time
scales: a fast time scale for the intra-burst oscillations and a slow time scale for
the periods between the bursts8,9. The burst initiation and termination are the
result of bifurcations in the system: a bifurcation of an equilibrium attractor,
resulting in a transition from resting to bursting, followed by a bifurcation from
a limit cycle attractor back to the resting state8,9. During the bursting, with fast
time-scale activity, there must also be a relatively slow process making neurons
inexcitable8.

In most situations, these two time scales result from processes involving fast
and slow ion currents. An example is the slow activation of the Ca2+ depen-
dent K+ after-hyperpolarizing current (IAHP). This current is activated during
bursting (fast time scale), as the intracellular Ca2+ concentration increases, and
eventually results in ending of the burst. Hereafter, the intracellular Ca2+ is
slowly removed and bursting may start again, as the outward K+ current deac-
tivates. Other scenarios include a calcium mediated inactivation of an inward
current and voltage gated inactivation of inward, or activation of outward cur-
rents. These and other mechanisms are discussed in more detail in Izhikevich
et al.9. Although such processes may result in identical burst morphology in
single neurons, it is not straightforward how identical bursts arise at thespatial
scale of an EEG.

Ching et al. proposed unifying mechanisms for all burst suppression patterns:
an imbalance of neural activity and available energy10. However, both our ob-
served burst phenomenology and the assumed pathophysiology of underlying
conditions argue against the same mechanism for burst-suppression patterns
from different causes. With regard to burst phenomenology, Ching’s simu-
lations generated variable bursts with equal (physiological) spectral content
as in baseline EEG, with preservation of dominant power in theα frequency
band. Otherwise, the spectral contents of our EEGs with “burst suppression
with identical bursts” consist of frequencies ranging from theδ to β band,
without a clear dominant frequency. Therefore, their claim that their model
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is consistent with descriptions of burst-suppression in ischemic brain injuryis
not substantiated by our findings.

With regard to pathophysiology, the initial event in cerebral ischemia is
synaptic failure11,12 where excitatory synapses are more vulnerable than in-
hibitory13. As energy levels further decrease, Na+/K+ pumps will fail and
neurons will depolarize14–16. In contrast, during medication induced burst-
suppression, neurons have been shown to hyperpolarize2, which has been as-
cribed to depression of glutamate mediated excitatory post-synaptic currents17.
Furthermore, identical bursts in burst suppression typically occurred one to
two days after the cardiac arrest, and continued during hours up to days. Since
blood flow has been restored at this time, an absolute lack of energy is unlikely.

Burst-suppression with identical bursts suggests a deterministic process of
burst generation, whereas other burst-suppression patterns ratherdepend on
stochastic processes. In a previous report, we have shown that bursts-
suppression with identical bursts represents a low dimensional state8. In pa-
tients after diffuse cerebral ischemia, selective synaptic failure is a candidate
mechanism for this condition, since during cerebral ischemia synaptic function
fails before the occurrence of membrane depolarization12. This may result in
deterministic network behavior of the brain, especially since gap junctions are
expected to be preserved18. Synaptic disturbances are presumably irreversible
after relatively severe ischemia, which may explain the high case fatality rate of
patients with burst-suppression with identical bursts11,12. Imaging techniques,
such as MRI, may not detect such irreversible network damage, as synaptic
changes need not to be accompanied by cell swelling11,12, which is supported
by the finding that approximately 20% of patients with a poor neurological
outcome after diffuse cerebral ischemia had no abnormalities on early MRI19.

Burst-suppression has been associated with poor neurological outcomeof sur-
vivors of cardiac arrest before. However, in previous studies, predictive values
were much lower than 100%3,20–22. In these studies, patterns were probably
heterogeneous, including burst-suppression with and without identical bursts,
supporting the notion of identical bursts being a distinct characteristic. Fur-
thermore, the current study confirms our previous results with regard to timing:
specific EEG changes only have a high predictive value if measured soonafter
cardiac arrest3. After a median of 36 hours, burst-suppression with identical
bursts evolves into less specific pathological patterns.
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Differences in baseline characteristics of patients with and without identical
bursts include the initial rhythm before resuscitation, propofol dosages, and
proportions of patients treated with fentanyl or remifentanil. Ventricular fibril-
lation occurred more often in patients with identical bursts. This is inconsistent
with our finding of poorer outcome in patients with as compared with those
without identical bursts, since ventricular fibrillation is associated with a better
outcome after resuscitation as compared with asystole or bradycardia23. The
lower dosages of propofol and the smaller proportions of patients treatedwith
fentanyl or remifentanil in patients with as compared to those without identical
bursts probably reflects more severe ischemic cerebral damage, in whichless
sedative medication was needed during ventilation and hypothermia.

Our study has certain limitations. First, some comatose patients after cardiac
arrest did not die as a result of cerebral damage, but from other complications.
It cannot be excluded that neurological recovery would have occurred in these
patients. Second, it was a single center study, which may have influenced treat-
ment decisions or EEG analysis. Third, most recordings of burst-suppression
with identical bursts after cardiac arrest were during treatment with propofol.
However, the observed identical burst-suppression patterns cannotbe solely
caused by this drug. Propofol induced EEG changes are well known.In the
relatively low dosages that were used in our patients, the EEG remains con-
tinuous, with anteriorization of the “alpha” rhythm24. If burst-suppression is
induced by propofol, bursts are heterogeneous and appear and disappear grad-
ually25,26, whereas our identical burst-suppression patterns were all character-
ized by abrupt transitions between bursts and suppressions. Moreover, several
of our patients with burst-suppression with identical bursts were not medically
sedated and two previously reported patients were neither treated with any
sedative medication7. Fourth, data on EEG reactivity, brainstem reflexes, and
clinically overt myoclonia were not collected prospectively, and retrospective
collection appeared unreliable. Therefore this information is lacking.

Conclusion
Burst-suppression with identical bursts is a distinct pathological EEG pattern
that in our series only occurred after diffuse cerebral ischemia. In comatose
patients after cardiac arrest it was invariably associated with poor outcome.
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Abstract
Objective: To assess the value of continuous EEG for prediction of outcome of
comatose patients after cardiac arrest treated with mild therapeutic hypother-
mia (MTH).
Methods: In a prospective cohort study, we included subsequent patients with
postanoxic encephalopathy after cardiac arrest, all treated with MTH. Contin-
uous EEG was recorded during the first five days of ICU admission. Visual
classification of EEG patterns was performed in 5 minute epochs at 12 and
24 hours after cardiac arrest by two observers independently, blinded for pa-
tients’ conditions and outcomes. Patterns were classified as iso-electric, low-
voltage, epileptiform, burst-suppression, diffusely slowed, or normal. Burst-
suppression was subdivided into patterns with and without identical bursts.
Primary outcome measure was the neurological outcome based on each pa-
tient’s best achieved Cerebral Performance Category (CPC) score within 6
months after inclusion.
Results:One-hundred-forty-eight patients were included, 68 (46%) had favor-
able outcome (CPC 1–2). In patients with favorable outcome, EEG patterns
improved within 24 hours after cardiac arrest, mostly towards diffusely slowed
or normal. At 24 hours after cardiac arrest, the combined group of iso-electric,
low voltage, and “burst-suppression with identical bursts” was invariablyasso-
ciated with poor outcome (sensitivity 48%, specificity 100%, positive predic-
tive value (PPV) 100%, negative predictive value (NPV) 66%). At 12 hours,
normal or diffusely slowed EEG patterns were strongly associated with good
outcome (sensitivity 56%, specificity 96%, PPV 93%, NPV 67%). Conclu-
sions: EEG monitoring allows reliable prediction of both good and poor neu-
rological outcome of postanoxic encephalopathy in patients treated with MTH
within 24 hours after cardiac arrest.
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Introduction
More than half of all comatose patients who have suffered from cardiac arrest
never recover of unconsciousness as a result of postanoxic encephalopathy1,2.
Early and reliable prediction of outcome in these patients may be helpful in
clinical decision making and preventing continuation of unsuitable medical
treatment. Predictive values of clinical measures and biochemical markers
have become uncertain since the widespread introduction of mild therapeu-
tic hypothermia (MTH)3–8. A bilateral absent cortical somatosensory evoked
potential (SSEP) is considered to be the most reliable predictor of poor out-
come9,10. However, its sensitivity is low, and neurological outcome remains
uncertain in patients with preserved cortical SSEP responses.

The electroencephalogram (EEG) depicts a direct measurement of sponta-
neous brain activity. Previous studies have shown that EEG monitoring may
be helpful in predicting early outcome in patients after cardiac arrest, treated
with MTH 4,11–13. We recently demonstrated that iso-electric and low-voltage
EEG patterns at 24 hours after cardiac arrest were invariably associated with
poor outcome, while normal or diffusely slowed patterns at 12 hours always
predicted favorable outcome12. In addition, we recently discovered a distinct
type of burst-suppression EEG, characterized by similar shapes of subsequent
bursts. We labeled this pattern as “burst-suppression with identical bursts” and
found that this pattern exclusively occurred in patients with diffuse cerebral
ischemia and is invariably associated with poor outcome14.

To confirm and extend the predictive value of EEG monitoring for both favor-
able and unfavorable neurological outcome of cardiac arrest patients,treated
with MTH, we conducted a prospective multicenter cohort study.

Materials and Methods
Design
This prospective cohort study was conducted in intensive care units (ICUs) of
two large teaching hospitals in the Netherlands. In the Medisch Spectrum
Twente (Enschede), patients were included from June 2010 to April 2013.
In the Rijnstate Hospital (Arnhem), patients were included from June 2012
to April 2013. The Medical Ethical Committee Twente waived the need for
informed consent for EEG monitoring during ICU stay, as well as for follow-
up by telephone consultation. A part of the results from the first 56 patients,
included between June 2010 and July 2011, was reported previously12.
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Patients
Cardiac arrest patients with restoration of circulation and need for mechanical
ventilation were admitted to the ICU for further treatment. Those who were
comatose (Glasgow Coma Scale≤8) at presentation in the emergency room
and subsequently treated with MTH, were eligible for inclusion. Exclusion
criteria were other neurological injuries, such as stroke or traumatic brainin-
jury, or any known history of neurological disorder.

Treatment protocol
All patients were treated according to standard protocols for comatose patients
after cardiac arrest. MTH, targeted at 33◦C, was induced as soon as possible af-
ter arrival in the ICU and was maintained for 24 hours. Induction of MTH was
performed by administering of 2 liters of cold saline intravenously and the use
of cooling pads (Arctic Sun, Temperature management system, MedivanceInc.
Louisville CO, USA) or a cooling matrass (Blanketrol II, Cincinnati Sub-Zero
Medical Division, USA). Thereafter, patients were rewarmed to normothermia
with a controlled speed of 0.25◦C or 0.5◦C per hour. In Medisch Spectrum
Twente, propofol and fentanyl/remifentanil were used for sedation, and in most
cases discontinued when body temperature had reached 36.5◦C. In Rijnstate
Hospital, patients received a combination of propofol, midazolam, and/or mor-
phine. In both hospitals, a non-depolarizing muscle relaxant (rocuronium or
atracurium) was added in case of severe compensatory shivering.

EEG recordings
In all patients, continuous EEG was recorded, starting as soon as possible
after patient’s arrival in the ICU and was continued for at least 3 days,or
until discharge from the ICU. Twenty-one silver-silverchloride cup electrodes
were placed on the scalp according to the international 10–20 system. Record-
ings were made using a Neurocenter EEG recording system (Clinical Science
Systems, The Netherlands) or a Nihon Kohden system (VCM Medical, the
Netherlands). EEG data during MTH played no role in actual prediction of
outcome or treatment decisions. However, treating physicians were not blinded
for the EEG and treatment of epileptiform discharges was allowed and left to
the discretion of the treating physician.

All EEG analyses were performed after the registrations. Epochs of 5 minutes
were automatically selected by a dedicated computer algorithm15 at 12 and
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24 hours after the estimated time of cardiac arrest. These time intervals were
chosen based on the results of our previous study12. Epochs were visually
scored by two reviewers (MT-C and MvP) independently. Visual analysis of
the epochs was done in random order, blinded to the point in time of the epoch,
the patient’s clinical status during the recording, and outcome. EEG epochs
were classified as isoelectric, low-voltage (<20 µV), epileptiform (including
evolving seizures and generalized periodic discharges), burst-suppression, dif-
fusely slowed, or normal. Diffuse slowing was defined as a continuous EEG
pattern with a dominant frequency<8 Hz12. Normal EEG was defined as
a continuous EEG pattern with a dominant frequency≥8 Hz. Reactivity and
anterior-posterior differentiation were not included in the definition of a normal
EEG pattern. Burst-suppression was defined by the presence of a clear increase
in amplitude (bursts), followed by interburst intervals of at least one second
with low-voltage or absent activity (suppressions,<10µV)). Burst-suppression
patterns were subdivided into patterns with and without identical bursts14.
“Burst-suppression with identical bursts” is defined as burst-suppression in
which shapes of subsequent bursts are similar. The reviewer was allowed to
skip the epoch if, mainly due to artifacts, no clear classification was possible.

Outcome
Primary outcome measure was neurological outcome expressed as the best
score within 6 months after cardiac arrest on the five-point Glasgow-Pittsburgh
Cerebral Performance Category (CPC)16. Outcome was dichotomized be-
tween “good” and “poor”. Good outcome was defined as a CPC score of1
or 2 (none or moderate neurological disability), and poor outcome as a CPC
score of 3, 4, or 5 (severe disability, comatose, or death). CPC scoreswere
determined at 3 and 6 months after cardiac arrest by a single investigator
(MT-C) based on consultation by telephone. Neurological examination was
performed daily during the ICU stay.

Statistical analysis
Patient characteristics and drug intake are presented in a descriptive way. Dif-
ferences between groups of patients with good and poor neurological out-
come were compared. Categorical variables were analyzed using Pearson’s
chi-square (if no subgroup had an expected count<5) or Fisher’s exact test.
Statistical analysis of differences between groups of continuous variables was
performed using an independentt-test, after confirmation of a normal distribu-
tion of these values.



4

54 Chapter 4

Sensitivity, specificity, positive predictive value (PPV) and negative predictive
value (NPV) of (groups of) specific EEG patterns for prediction of good or
poor outcome after 12 or 24 hours after cardiac arrest were calculated, includ-
ing the corresponding 95% confidence intervals (CI).

Results
One-hundred-fifty-four patients were included and continuous EEG monitor-
ing was started at a mean of 10.6 (SD: 10.1) hours after cardiac arrest. Six
patients were excluded in a later stage. Two patients were excluded because
of intracerebral hemorrhage, one because of discontinuation of MTH after 5
hours, one because of technical problems of the EEG registration and two
because they died within 12 hours, before any epochs for analysis could be
selected. Of the remaining 148 patients, none were lost to follow-up. Hundred-
and-fourteen were included in Medisch Spectrum Twente, and 34 in Rijn-
state Hospital. Sixty-eight patients (46%) had good neurological outcome. A
flowchart is shown in Figure 4.1, patient characteristics and the use of sedative
or analgesic drugs are given in Table 4.1. EEG analysis could be performed
in 98 patients at 12 hours, and in 129 patients at 24 hours after cardiac arrest.
Analysis of other EEG epochs was not possible, because of artifacts orbecause
EEG registration started after 12 hours after cardiac arrest.

EEG patterns in poor outcome
Of patients with poor neurological outcome, EEGs at 12 hours after cardiac ar-
rest, showed iso-electric (n=10, 21%), low voltage (n=13, 27%), or burst sup-
pression patterns with (n=11, 23%) or without (n=10, 21%) identical bursts.
Two patients (4%) with poor outcome had epileptiform discharges at 12 hours
after cardiac arrest, and two other (4%) had a continuous, diffusely slowed
EEG. At 24 hours after cardiac arrest, the EEG of patients with poor neurolog-
ical outcome had not improved in a substantial proportion: iso-electric (n=4,
6%), low voltage (n=9, 14%), or burst suppression pattern with (n=18, 28%)
or without (n=18, 28%) identical bursts. Four patients with poor neurological
outcome (6%) had epileptiform discharges at 24 hours. Eleven patients (17%)
with poor neurological outcome showed a continuous, diffusely slowed EEG
pattern at 24 hours after cardiac arrest. At later time points, more patients
(41%) with a poor outcome, showed a continuous EEG pattern.
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Figure 4.1: Flowchart of patients through this study.
a Both patients had poor outcome, one of them had a burst-suppression EEG with identical
bursts both after 12 and after 24 hours after cardiac arrest, from the other patient no artifact free
EEG data was available at 12 and 24 hours.
b This patient had poor neurological outcome, the EEG showed epileptiformdischarges at 24
hours after cardiac arrest.
c This patient had good neurological outcome and showed a diffusely slowed EEG pattern at
both 12 and 24 hours after cardiac arrest. The patient was excluded because the raw EEG data
was not saved, and visual analysis of the EEG was done unblinded.

EEG patterns in good outcome
Patients with good neurological outcome had burst suppression patterns with-
out identical bursts (n=19, 38%), diffusely slowed (n=18, 36%) or normal EEG
patterns (n=10, 20%) at 12 hours after cardiac arrest. Three patients (6%) with
good neurological outcome had a low voltage pattern at 12 hours after cardiac
arrest. At 24 hours after cardiac arrest, the EEG of 56 (86%) patients with a
good neurological outcome had improved towards a continuous pattern, either
diffusely slowed (n=40, 62%) or normal (n=16, 25%). Only nine patients
(14%) with good neurological outcome still showed a burst suppression pattern
without identical bursts. Those nine patients showed improvement towards a
continuous EEG pattern in a later stage.

An overview of the EEG patterns at 12 and 24 hours after cardiac arrest in
patients with poor and good neurological outcome is given in Figure 4.2. Fig-
ure 4.3 represents illustrations of a burst-suppression pattern without and with
identical bursts.
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Table 4.1: Baseline characteristics of patients with good and poor neurological outcome.

Poor neurological
outcome (CPC 3–5)

Good neurological
outcome (CPC 1–2)

p-value

Number of patients 80 68 -
Number of male 58 (73%) 47 (69%) 0.65
Age (years) 67 (std 12) 61 (std 12) 0.005

(range: 27 to 82) (range: 34 to 93)
Number of OHCA 67 (84%) 64 (94%) 0.05
Initial Rhythm <0.001

VF 39 (49%) 61 (90%)
Asystole 27 (34%) 0 (0%)
Bradycardia 6 (8%) 0 (0%)
Unknown 8 (10%) 7 (10%)

Presumed cause of CA 0.03
Cardiac 53 (66%) 55 (81%)
Other origin 15 (19%) 3 (4%)
Unknown 12 (15%) 10 (15%)

Patients sedated with propofol 75 (94%) 66 (99%) 0.22
Propofol dose (mg/kg/h) 2.6 (std 1.1)

(range: 0.2 to 6.2)
3.0 (std 1.0)

(range: 0.2 to 5.4)
0.01

Patients sedated with midazolam 32 (40%) 19 (28%) 0.14
Midazolam dose (mg/kg/h)* 0.29 (std 0.25)

(range: 0.03 to 0.77)
0.25 (std 0.22)

(range: 0.03 to 0.67)
0.53

Patients treated with fentanyl 37 (46%) 36 (53%) 0.41
Fentanyl dose (µg/kg/h) 1.7 (std 0.9)

(range: 0.6 to 4.7)
1.9 (std 0.6)

(range: 0.7 to 2.7)
0.20

Patients treated with remifentanil 24 (30%) 19 (28%) 0.78
Remifentanil dose (µg/kg/h) 4.6 (std 2.9)

(range: 1.1 to 13.3)
7.4 (std 4.4)

(range: 2.5 to 14.7)
0.02

Patients treated with morphine 19 (24%) 13 (19%) 0.52
Morphine dose (mg/kg/h)* 0.34 (std 0.14)

(range: 0.20 to 0.65)
0.28 (std 0.10)

(range: 0.16 to 0.58)
0.22

(CPC=cerebral performance category, OHCA=out-of-hospital cardiac arrest, VF=ventricular
fibrillation, CA=cardiac arrest.) * Data of the dose levels of propofol, midazolam, and
morphine was missing in two patients.

Predicting neurological outcome
At 24 hours after cardiac arrest, 48% of patients with poor neurologicalout-
come showed iso-electric, low voltage, or burst-suppression with identical
bursts EEG patterns, against none of the patients with a good neurological
outcome. At 12 hours, 56% of the patients with good neurological outcome
showed a normal or diffusely slowed EEG pattern, against two patients (4%)
with poor neurological outcome. These latter two patients died from non-
neurological causes (cardiac shock and a second cardiac arrest) before neu-
rological examination was possible. Sensitivity, specificity, PPV, and NPV
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Figure 4.2: EEG patterns at 12 and 24 hours after cardiac arrest for patients with
good and poor neurological outcome. In all patients with iso-electric EEG,low-voltage
EEG, or burst-suppression patterns with identical bursts after 24 hours, outcome was poor.
(CPC=Cerebral performance category, BS non identical=burst-suppression without identical
burst, BS identical=burst-suppression with identical bursts.)

of (groups of) EEG patterns for the prediction of good or poor neurological
outcome are displayed in Table 4.2.

Epileptiform activity
At 12 hours after cardiac arrest, the EEGs of two patients showed epileptiform
activity (evolving seizures). Both still showed this activity at 24 hours. Two
additional patients had epileptiform discharges at 24 hours after cardiacarrest.
In one of them, this activity consisted of evolving seizures, and in the other
of generalized periodic discharges. All four patients had poor neurological
outcome, despite treatment with anti-epileptic drugs in three of them.
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Figure 4.3: Illustrations of burst-suppression patterns without (A) and with (B) identical
bursts. These EEGs were recorded in two patients with postanoxic encephalopathy 24 hours
after cardiac arrest, treated with mild therapeutic hypothermia (33◦C). Filter settings were 0.5-
35 Hz. A) This patient received propofol (4.3 mg/kg/h), and had a good neurological outcome
(CPC=1). B) This patient received propofol (2.7 mg/kg/h), and had a poor neurological outcome
(CPC=5).
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Table 4.2: Sensitivity, specificity, and predictive values for early prediction of neurological
outcome using EEG.

Time after
resusci-

tation (h) Predicting
Sens

(95% CI)
Spec

(95% CI)
PPV

(95% CI)
NPV

(95% CI)

EEG diffuse
slowed or
normal

12 Good
Outcome

56
(41–70)

96
(86–100)

93
(78–99)

68
(55–78)

EEG iso-electric,
low-voltage or
burst-suppression
with identical
bursts

24 Poor
Outcome

48
(35–61)

100
(94–100)

100
(89–100)

66
(56–76)

(Sens=sensitivity, Spec=specificity, PPV=positive predicting value, NPV=negative predictive
value, CI=confidence interval.)

Discussion
In this prospective cohort study involving the largest reported group of cardiac
arrest patients, treated with MTH, we showed that distinct EEG patterns during
continuous EEG monitoring at 12 or 24 hours after cardiac arrest reliably
predict both good and poor neurological outcome. At 24 hours, iso-electric,
low voltage, or burst-suppression with identical bursts patterns predictedpoor
neurological outcome with a sensitivity of 48% and a specificity of 100%. In
contrast, at 12 hours, continuous patterns, either normal or diffusely slowed,
predicted good neurological outcome with a sensitivity of 56% and a speci-
ficity of 96%.

Our findings are in line with other studies reporting on EEG for prediction of
outcome of patients treated with MTH after cardiac arrest. In general, continu-
ous patterns have been associated with good neurological outcome, both during
MTH and at normothermia4,11,13,17,18. In contrast, iso-electric or low-voltage
patterns, burst-suppression, and status epilepticus at normothermia havebeen
associated with poor neurological outcome4,11,13,17,18. However, unlike in our
study, it was not always clear at which moment after cardiac arrest EEGs were
assessed, which limits comparison. Our data show that the time of evaluation
from cardiac arrest is critical and that differences of EEG patterns between pa-
tients with good versus poor outcome are especially large in the first 24 hours.
Therefore, we chose to assess predictive values at 12 and 24 hours. These
critical time points were applied based on results of our previous study in 56
patients, which showed that EEG patterns evolve towards less specific patterns



4

60 Chapter 4

beyond 24 hours after cardiac arrest12. In the current study, besides isoelectric
and low voltage patterns, we extended the category of unfavorable EEG with
“burst-suppression with identical bursts”, a distinct EEG pattern which also
appears to be invariably associated with poor neurological outcome14.

Previously studied parameters for prediction of neurological outcome included
prehospital factors (initial cardiac rhythm, age or witnessed versus nonwit-
nessed cardiac arrest), as well as clinical (motor score at 72 hours, corneal
reflexes and pupillary light responses) and biochemical markers (neuron spe-
cific enolase, S-100B)2–6,19,20. However, since the introduction of MTH, only
bilateral absent SSEP responses at 72 hours and bilateral absent pupillary light
reflexes at 72 hours still seem to reliably predict poor outcome, with false
positive rates of 0.7% and 0.4% respectively6, while of no single parameter,
predictive values were as high as those of early EEG measures. Why does
EEG monitoring perform so well in predicting neurological outcome? The
EEG reflects cortical activity, mainly resulting from synaptic activity of pyra-
midal cells in the cortex21. It is generally assumed that synaptic transmission
is the first process to fail during cerebral ischemia22, which makes the EEG
signal very sensitive to effects of ischemia22. In this study, we did not include
clinical parameters, since we focused on the EEG patterns within 24 hours
after cardiac arrest in patients treated with MTH. During this time interval,
all patients were sedated, limiting conclusive neurological examination. Still,
prediction of clinical outcome may be improved and extended to later time
points after cardiac arrest by combining neurophysiological, biochemical,and
clinical data6.

In our cohort of 148 patients, four (3%) had epileptiform activity within the
first 24 hours. All four had poor neurological outcome. This is in line with
previous literature, describing that epileptiform activity is associated with poor
outcome, however not inevitably so17,23–26. We therefore did not include
epileptiform activity or status epilepticus in our criteria for the prediction
of poor neurological outcome. More patients from our cohort probablyhad
epileptiform activity at later time points, which was not structurally evaluated.
It is unknown whether treatment of these patterns, including generalized peri-
odic discharges, improves outcome27–31. To address this issue, a randomized
clinical trial to estimate the effect of early and intensive treatment of these
patterns should be conducted.
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Most of our patients were treated during MTH with propofol, or a combination
of propofol and midazolam. Although these sedatives influence EEG patterns,
they did not affect the predictive values of the specific EEG patterns in our co-
hort. Iso-electrical, low voltage, or burst-suppression with identical bursts pat-
terns cannot be solely induced by propofol and/or midazolam. In the relatively
low dosages of propofol and midazolam that were used in our patients, the
EEG should have remained continuous in patients without postanoxic neuronal
damage32–35. In burst-suppression patterns induced by propofol, bursts are
heterogeneous and appear and disappear gradually36,37, whereas our identical
burst-suppression patterns were all characterized by abrupt transitions between
bursts and suppressions14. There were no statistically significant differences
in type of medication between the patients with good and poor neurological
outcome or dosage of midazolam (Table 4.1). The dosage of propofol was
slightly higher in patients with a good neurological outcome, which might re-
flect less severe postanoxic encephalopathy probably resulting in more arousal.

Our study has certain limitations. First, a common problem in unblinded
studies investigating the prognostic value of a certain parameter may be the
“self-fulfilling prophecy”. Although EEGs were scored offline and blinded
for the patients’ outcome, attending physicians were not blinded for the EEG
registration to enable treatment of epileptiform activity. Therefore, the EEG
could potentially have influenced clinical decision making regarding to discon-
tinuation of further treatment. However, current guidelines regarding treatment
continuation were strictly followed and do not include the EEG during the first
24 hours. A second limitation is the visual analysis of EEGs. Although scoring
of the EEGs was performed by two reviewers blinded to the patients’ outcome,
and according to strict definitions, visual analysis, although gold standard,
remains partly subjective. The use of automated, quantitative methods may
provide a more objective assessment15,38,39.

Conclusions
Distinct EEG patterns within 24 hours after cardiac arrest reliably predictboth
good and poor neurological outcome of patients with postanoxic encephalopa-
thy after cardiac arrest, treated with MTH. At 24 hours after cardiac arrest,
the combined group of iso-electric, low voltage, and “burst-suppressionwith
identical bursts” is invariably associated with poor outcome. At 12 hours,
normal or diffusely slowed EEG patterns are strongly associated with good
outcome. EEG monitoring within the first 24 hours after cardiac arrest may be
included in future clinical guidelines.
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Abstract
Objective: Electroencephalographic seizures, including status epilepticus, oc-
cur in 9–35% of comatose patients after cardiac arrest. Mortality is 90–100%.
Most physicians treat these patients with anti-epileptic drugs. However, it is
unclear whether (some) seizure patterns represent a condition in which treat-
ment improves outcome, or severe ischemic damage, in which treatment is
futile. We studied treatment, including its effects on EEG and outcome, of
electroencephalographic seizures and status epilepticus of comatose patients
after cardiac arrest.
Design: Retrospective analysis of prospective observational cohort study.
Setting: Medical intensive care units of two teaching hospitals.
Patients: Patients admitted for therapeutic hypothermia after cardiac arrest.
Intervention: None.
Measurements and main results: Thirty-one (22%) out of 139 patients were
treated with anti-epileptic drugs (fenytoin, levetiracetam, valproate, clon-
azepam, propofol, midazolam): two with one, nine with two, thirteen with
three, five with four, one with five, and one with six different anti-epileptic
drugs. This treatment improved pathological EEG patterns in most patients.
However, all but one patients with electroencephalographic status epilepticus
died. Outcome was assessed at six months with the Cerebral Performance
Category score. In patients with unfavorable EEG patterns at 24 hours after
cardiac arrest, including a subgroup with seizures or GPDs, there was no differ-
ence in outcome between those treated with and without anti-epileptic drugs.
Otherwise, in a subgroup with relatively favorable patterns, the proportion of
patients with a poor outcome was lower after treatment with anti-epileptic
drugs.
Conclusions: In comatose patients after cardiac arrest, treated with hypother-
mia, the widely used practice of moderate treatment of electroencephalo-
graphic status epilepticus does not improve outcome and can be considered
futile. Future studies should focus on early and aggressive treatment.
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Introduction
Of comatose patients after cardiac arrest, 40%–66% never regains conscious-
ness as a result of diffuse postanoxic encephalopathy1–3. In these patients a
broad spectrum of electroencephalography (EEG) changes can be observed4.
Electroencephalographic seizures or status epilepticus is described in 9%–
35%4–7 and is associated with poor outcome: case fatality was 90%–100%
in prospective case series, despite treatment with anti-epileptic drugs2,6,8–13.

The diagnosis of seizures and status epilepticus on the electroencephalogram
(EEG) in comatose patients after cardiac arrest is controversial14,15. It may
consist of unequivocal seizures: generalized spike-wave discharges at 3/s or
faster or clearly evolving discharges of any type at 4/s or faster, either general-
ized or focal. However, some experts also consider other rhythmic or periodic
patterns, such as generalized or lateralized periodic discharges or rhythmic
delta activity, as seizure activity16.

It is unclear whether (some) electroencephalographic seizure patternsin pa-
tients with postanoxic encephalopathy represent a condition which can be
treated with antiepileptic drugs to improve patients’ outcome, or rather se-
vere ischemic damage, in which treatment is futile17. Case series have sug-
gested that in patients with electroencephalographic status epilepticus, pre-
served brainstem reactions and EEG reactivity are associated with a favorable
outcome6. However, it is unclear whether treatment with anti-epileptic drugs
reduces the risk of a poor outcome in these patients and if so, how aggressive
this treatment should be. In the only prospective non-randomized interven-
tion study, aggressive treatment up to pentobarbital induced burst-suppression
resulted in a good outcome of 6% of patients with clinically overt or elec-
troencephalographic status epilepticus. This proportion is approximately the
same as reported in observational studies, irrespective of treatment6,10–13. De-
spite this lack of evidence, most neurologists treat electroencephalographic
seizures and status epilepticus in comatose patients after cardiac arrest with
anti-epileptic drugs and increased detection with continuous EEG monitoring
has led to increased prescription18,19. However, only approximately one third
treats patients with electroencephalographic status epilepticus equal to those
with clinically overt status epilepticus18,20.

We evaluated treatment, including its effects on the EEG and patient outcome,
of seizures and electroencephalographic status epilepticus on continuous EEG
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in our prospective cohort study on the prognostic value of continuous EEG
monitoring of comatose patients after cardiac arrest on the intensive care unit.

Methods
Patients
We identified patients that were treated with anti-epileptic drugs (fenytoin,
levetiracetam, valproate, or clonazepam) for electroencephalographic seizures
or status epilepticus from our prospectively collected cohort of comatosepa-
tients after cardiac arrest, treated with hypothermia, between June 1st 2010
and March 31st 2013. These patients were included in a prospective cohort
study on the predictive value of continuous EEG on outcome in two hospitals
in the Netherlands. Design, eligibility criteria, and main outcomes of the first
60 patients that were included in this study have been published previously4.
In brief, since June 1st 2010, consecutive adult comatose patients after cardiac
arrest, treated with hypothermia, were included within twelve hours after the
arrest to undergo continuous EEG monitoring on the intensive care unit. Moni-
toring continued until patients regained consciousness, died, or up to fivedays.
The study was approved by the institutional review board (Medisch Ethische
Toetsingscommissie Twente) and informed consent for continuous EEG mea-
surement was waived. Patients’ informed consent was asked for clinical follow
up.

Treatment
Comatose patients after cardiac arrest were treated according to current stan-
dard therapy, as described previously4. In short, hypothermia of 33◦C was
induced as soon as possible after the arrest and maintained for 24 hoursby in-
travenously administered cold saline and cooling pads. Propofol, midazolam,
or a combination of these was used for sedation to a level of−4 or−5 at the
Richmond Agitation Sedation Scale and discontinued after normothermia had
been reached, if possible. Fentanyl, remifentanil, or morphine was used against
shivering. Treatment of epileptiform discharges was not included in the study
protocol and was left to the discretion of the treating physician. If continuously
infused propofol or midazolam dose was increased simultaneously with the
initiation of treatment with anti-epileptic drugs, this was considered as anti-
epileptic treatment.
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EEG recordings
For all recordings, electrodes were applied according to the international 10–
20 system, using 19 channels. Electrode impedances were kept below 5 kΩ.
Sampling frequency was set to 256 Hz. A Neurocenter EEG system (Clinical
Science Systems, the Netherlands) or a Nihon Kohden system (VCM Medical,
the Netherlands) was used. Data were stored to disk for off-line analysis.

Outcome assessment
The primary outcome measure of the study was the best score on the Cerebral
Performance Category (CPC) within six months dichotomized between “good”
(CPC 1 or 2) and “poor” (CPC 3, 4, or 5). Outcome assessment was done at
three and at six months after cardiac arrest by telephone by a single investigator
(MT-C) that was blinded for treatment with anti-epileptic drugs. Secondary
outcome measures included mortality.

EEG analysis
EEG analyses were done at the initiation of and during anti-epileptic treatment,
and at 24 hours after cardiac arrest. EEGs first were analyzed independently
by two investigators (MT-C, MvP) in automatically selected epochs of five
minutes at 24 hours after cardiac arrest. Each epoch was categorized as iso-
electric, low voltage, burst-suppression, diffuse slowing, normal, or epilep-
tiform discharges. Epileptiform discharges included unequivocal, evolving
seizures and generalized periodic discharges (GPDs). The investigators were
blinded for the patients’ clinical condition during the registration, the recording
time of the epoch, and the patient’s outcome. In case of disagreement, the final
classification was decided by consensus. These standardized EEG analyses
were done after the registrations and EEG played no role in initial treatment
decisions with regard to continuation of intensive care treatment. All EEGs
of patients who had been treated with anti-epileptic drugs were subsequently
reviewed by two observers (JH, MvP), who had access to the complete record-
ings, but were blinded for the patients’ outcome.

Statistical analysis
The number of patients treated with the various anti-epileptic drugs, the pro-
portion of patients in whom this treatment improved the EEG, and the propor-
tion of patients with a poor outcome after treatment are presented in a descrip-
tive way for subgroups according to the EEG patterns at the time of treatment
initiation. Patients treated with and without anti-epileptic drugs are compared



5

70 Chapter 5

Table 5.1: Baseline characteristics of patients treated with and without anti-epileptic drugs.

Treatment with anti-epileptic drugs
Yes (n=31) No (n=108)

Age (mean years± SD) 64± 11 65± 12
OHCA 29 95
Presumed cause of cardiac arrest

Cardiac 20 82
Other 5 11
Unknown 6 15

Initial rhythm
VF 21 76
Asystole 6 17
Bradicardia 2 4
Unknown 2 11

Propofol treatment 28 101
Propofol dosage (mg/kg/h, mean± SD) 3.0± 0.7 2.8± 1.1
Midazolam treatment 9 36
Midazolam dosage (µg/kg/h, mean± SD) 211± 271 309± 252
Fentanyl treatment 17 53
Fentanyl dosage (µg/kg/h, mean± SD) 1.6± 0.7 1.8± 0.8
Remifentanil treatment 9 33
Remifentanil dosage (µg/kg/h, mean± SD) 4.7± 2.3 4.2± 0.7
Morphine treatment 3 23
Morphine dosage (µg/kg/h, mean± SD) 331± 148 309± 119

SD indicates standard deviation; OHCA, out of hospital cardiac arrest; VF, ventricular
fibrillation; dosage, maximum dosage within the first 24 hours.

with regard to poor outcome for subgroups according to the EEG patterns at
24 hours after cardiac arrest, which are known to be related to outcome4. Data
are presented as proportions and odds ratio’s, including corresponding 95%
confidence intervals.

Results
March 31st 2013, 139 patients had been included (108 in Medisch Spectrum
Twente and 31 in Rijnstate Hospital). Baseline characteristics are presented
in 5.1. Blinded EEG evaluation could be performed in 121 at 24 hours.
Analysis at 24 hours of other EEGs was not possible in case of artifacts in
the automatically selected five minute epochs.

Thirty-one patients (22%) were treated with anti-epileptic drugs. This treat-
ment was initiated at a median of 47 hours after cardiac arrest (interquartile
range 36-76). Two patients were treated with one, nine with two, thirteen with
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three, five with four, one with five, and one with six different anti-epileptic
drugs. Three of these patients had evolving seizures, twelve GPDs, andnine
burst-suppression, during more than 30 minutes. Examples are shown in Fig-
ures 5.1 and 5.2. Burst-suppression patterns that had been treated with anti-
epileptic drugs consisted of bursts resembling epileptiform discharges with
duration of one up to tens of seconds and flat inter-burst intervals. All but one
patients with evolving seizures, GPDs, or burst suppression treated with anti-
epileptic drugs had a poor outcome and died (Tables 5.2 and 5.3). The only
patient with a good outcome had GPDs intermixed with physiological activity.
Five patients with short episodes of rhythmic delta activity of three up to ten
seconds, and three with isolated sharp waves, both superimposed on diffusely
slowed, but continuous patterns, were treated with anti-epileptic drugs. These
all had a good outcome.

In Table 5.4, patients treated with and without anti-epileptic drugs are com-
pared with regard to the risk of poor outcome for subgroups according to
the EEG patterns at 24 hours after cardiac arrest. There were no statistically
significant differences in the subgroups with relatively unfavorable EEG pat-
terns (iso-electric or low voltage, and burst suppression, evolving seizures, or
GPDs). Otherwise, in patients with diffusely slowed or normal EEG patterns
at twelve or 24 hours after cardiac arrest, the proportion of patients with apoor
outcome was lower after treatment with anti-epileptic drugs.

Discussion
In this prospective observational study in comatose patients after cardiacarrest,
treated with hypothermia, retrospective analysis of moderate treatment with
anti-epileptic drugs yielded no evidence for effect on outcome of patients with
electroencephalographic status epilepticus: all but one patients with evolving
seizures, GPDs or burst suppression treated with anti-epileptic drugs had a
poor outcome and died. However, all patients that had been treated with anti-
epileptic drugs because of short episodes of rhythmic delta activity or iso-
lated sharp waves superimposed on diffusely slowed, but continuous patterns
had a good outcome. Among patients with these relatively favorable EEG
patterns4,21 the proportion of patients with a poor outcome was lower after
treatment with anti-epileptic drugs.

Many of our patients that were treated with anti-epileptic drugs fulfilled the cri-
teria for status epilepticus by semiology, EEG appearance, and duration. Still,
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Table 5.2: Anti-epileptic drugs with their effects on EEG patterns and clinical outcome.

Drug (n) EEG pattern (n) Improved EEG
n (%)

Poor outcome
n (%)

Fenytoin (25) Evolving seizures (1) 1 (100%) 1 (100%)
GPD (11) 6 (55%) 11 (100%)
Burst suppression (8) 3 (38%) 8 (100%)
Isolated sharp waves (1) 1 (100%) 0
Intermittend rhythmic delta (4) 4 (100%) 0

Levetiracetam (7) Evolving seizures (2) 1 (50%) 2 (100%)
GPD (2) 1 (50%) 2 (100%)
Burst suppression (1) 1 (100%) 1 (100%)
Isolated sharp waves (1) 0 0
Intermittend rhythmic delta (1) 1 (100%) 0

Valproate (11) Evolving seizures (3) 2 (67%) 3 (100%)
GPD (3) 1 (33%) 2 (67%)*
Burst suppression (1) 0 1 (100%)
Isolated sharp waves (2) 1 (50%) 0
Intermittend rhythmic delta (2) 2 (100%) 0

Clonazepam (9) Evolving seizures (1) n.a. 1 (100%)
GPD (3) 2 (67%) 3 (100%)
Burst suppression (1) 1 (100%) 1 (100%)
Isolated sharp waves (1) 0 0
Intermittend rhythmic delta (3) 3 (100%) 0

Propofol (8) Evolving seizures (0) - -
GPD (5) 3 (60%) 4 (80%)*
Burst suppression (1) 0 1 (100%)
Isolated sharp waves (1) n.a. 0
Intermittend rhythmic delta (1) 1 (100%) 0

Midazolam (5) Evolving seizures (0) - -
GPD (2) 0 2 (100%)
Burst suppression (2) 0 2 (100%)
Isolated sharp waves (0) - -
Intermittent rhythmic delta (1) 1 (100%) 0

Fenytoin initial dosage 1000–1500 mg followed by 200–300 mg daily in two doses.
Levetiracetam 1000–1500 mg daily in two doses. Valproate initial dosage 1000–1800 mg
followed by 1000–1500 mg daily in two doses. Clonazepam single or repeated bolus of 1 mg.
Propofol 200–400 mg/hr. Midazolam 8–10 mg/hr. Burst-suppression patterns consisted of
bursts resembling epileptiform discharges of one up to five seconds andflat interburst intervals.
Improved EEG pattern indicates temporary suppression of evolving seizures, reduction of
amplitude of generalized periodic discharges (GPD) or burst-suppression, disappearance of
isolated sharp waves, or reduction of amplitude and rhythm of intermittent rhythmic delta
activity; EEG, electroencephalography; n.a. not assessable; *, in the only patient with GPDs
and a good outcome, GPDs were intermixed with physiological activity.
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Figure 5.1: Examples of EEGs of two comatose patients after cardiac arrest showinggener-
alized periodic discharges. These patients were normothermic and sedated with propofol 1 to
2.5 mg/kg/hr. The EEG epochs were recorded 46 hours (A) or 68 hours (B) after cardiac arrest.
Filter settings 0.5–30 Hz.
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Figure 5.2: Examples of EEGs of two comatose patients after cardiac arrest showingevolving
seizures. These patients were sedated with propofol 1 to 2.5 mg/kg/hr. The EEG epochs were
recorded 19 hours after cardiac arrest, during therapeutic hypothermia (33◦C) (A), or 78 hours
after cardiac arrest, after restoration of normothermia (B). Filter settings 0.5–30 Hz.
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Table 5.3: Proportions of patients with improved EEG or poor outcome after treatmentwith
(combinations of) anti-epileptic drugs, according to the EEG pattern at the initiation of treat-
ment.

EEG pattern at initiation of treatment (n) Improved EEG n
(%)

Poor outcome n (%)

Evolving seizures (3) 3 (100%) 3 (100%)
GPD (12) 9 (75%) 11 (92%)
Burst suppression (9) 3 (33%) 9 (100%)
Isolated sharp waves (2) 2 (100%) 0
Intermittent rhythmic delta (5) 5 (100%) 0

Two patients were treated with one, nine with two, thirteen with three, five with four, one
with five, and one with six different anti-epileptic drugs. Burst-suppression patterns consisted
of bursts resembling epileptiform discharges of one up to five seconds and flat inter-burst
intervals. Improved EEG indicates temporary suppression of evolving seizures, reduction of
amplitude of generalized periodic discharges (GPD) or burst-suppression, disappearance of
isolated sharp waves, or reduction of amplitude and rhythm of intermittent rhythmic delta
activity; EEG, electroencephalography; n.a. not accessible; *, in theonly patient with GPDs
and a good outcome, GPDs were intermixed with physiological activity.

Table 5.4: Proportions of patients with poor outcome treated with or without anti-epileptic
drugs according to EEG pattern at 24 hours after cardiac arrest.

EEG pattern at 24 hours Poor outcome
with AED
n/N (%)

Poor outcome
without AED

n/N (%)

OR (95% CI)

Iso-electric or low voltage (n=12) 5/5 (100%) 7/7 (100%) n.a.
Evolving seizures, GPD, or

burst suppression (n=46)
14/17 (82%) 23/29 (79%) 1.1 (0.4 to 3.1)

Continuously slowed (n=61) 0/5 (0%) 7/54 (13%) 0.9 (0.8 to 1.0)

AED indicates anti-epileptic drugs; OR, odds ratio of poor outcome of patients treated with as
compared to patients treated without AED; 95% CI, 95% confidence interval.

all were treated only moderately and in none of them treatment induced burst-
suppression EEG. If these patients indeed had an electroencephalographic sta-
tus epilepticus, they were probably not treated sufficiently, especially since
treatment of status epilepticus in general improves outcome if directed at sup-
pression of electroencephalographic epileptiform discharges22. The modera-
tion of treatment in our cohort is representative for the general ambivalence
towards treatment of electro-encephalographic seizures in comatose patients
after cardiac arrest18,20. This moderation reflects the uncertainty with regard
to the use of this treatment in these patients.

Apart from the intensity of treatment, the onset of treatment probably plays an
important role. With continuous EEG monitoring starting twelve hours after
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cardiac arrest, we found that in approximately one quarter of patients with elec-
troencephalographic status epilepticus, the epileptiform patterns started before
24 hours after cardiac arrest. In previous studies, EEG monitoring only started
at a median of two to three days after cardiac arrest, indicating that diagnosis
and subsequent treatment of electroencephalographic status epilepticusstarted
thereafter at its earliest6,10,12. Mechanisms such as excessive glutamate release
are known to worsen brain damage in ongoing status epilepticus within twenty
to forty minutes23. Also, prolonged duration of status epilepticus reduces the
effect of treatment, e.g. due to receptor trafficking24. Thus, the initiation of
treatment many hours after the onset of electroencephalographic status epilep-
ticus may be too late to prevent irreversible damage.

Previous studies have focused on electroencephalographic status epilepticus
as a predictor of poor outcome after cardiac arrest and the identification of
patients in whom treatment of status epilepticus might be beneficial. These
have shown that sporadic patients with postanoxic encephalopathy after car-
diac arrest and electroencephalographic status epilepticus may survive4,12,13,21.
Identified possible determinants of a favorable outcome include a continuous
background pattern21, preserved brainstem reactions, and EEG reactivity6.
However, even in survivors, it remained unclear whether or not (aggressive)
treatment had improved outcome, since electroencephalographic status epilep-
ticus after cardiac arrest is often spontaneously transient6.

We found a possible beneficial effect of anti-epileptic drugs on outcome of
patients with relatively favorable EEG patterns, suggesting a neuroprotective
effect. The only neuroprotective treatment of proven benefit so far in comatose
patients after cardiac arrest is therapeutic hypothermia1. A randomized con-
trolled trial on the effect of prophylactic treatment with anti-epileptic drugs is
ongoing (http://clinicaltrials.gov/ct2/show/NCT01083784).

This study has limitations. First, although data on patient outcome and EEG
patterns were pre-specified and collected prospectively, data on the use of anti-
epileptic drugs were retrieved retrospectively, implying possible observation
or selection bias. Second, since evidence of effect for treatment is lacking,
there was no treatment protocol. Therefore, both the nature and the intensity
of treatment differed among physicians. However, treatment never reached
an intensity to induce burst-suppression EEG and barbiturates were not used.
Third, although the Glasgow Coma Scale score was measured daily, infor-
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mation on other clinical parameters had not been collected prospectively, and
retrospective collection appeared unreliable. Therefore, the proportion of pa-
tients with clinically overt myoclonic status epilepticus was unclear. However,
in patients after cardiac arrest, for both electroencephalographic seizures and
clinical myoclonia it is not clear whether these represent “true” seizures, with
a possibility to return to physiological activity, or an expression of severe(irre-
versible) damage25. For most neurologists the threshold to treat patients with
overt myoclonia is lower than for patients with non-convulsive electroence-
phalographic seizures. However, irreversible damage is probably even more
likely in patients with myoclonia, since the risk of poor outcome is larger6 and
neuronal necrosis is more common25. Fourth, we selected patients based on
treatment with specific anti-epileptic drugs and only identified continuously
infused propofol or midazolam as a treatment against electroencephalographic
seizures, if dosages increased simultaneously with the initiation of treatment
with anti-epileptic drugs. We cannot exclude that in some patients electroen-
cephalographic seizures were treated solely with propofol or midazolam.

Conclusion
In comatose patients after cardiac arrest, treated with hypothermia, general
practice of treatment of electroencephalographic status epilepticus includes
moderate treatment with anti-epileptic drugs. Although widely used, such
treatment does not improve patients’ outcome and can be considered futile.
Future studies should focus on early and aggressive treatment.
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Abstract
Objective: The implementation of a computer assisted system for real-time
classification of the electroencephalogram (EEG) in critically ill patients.
Methods: Eight quantitative features were extracted from the raw EEG and
combined into a single classifier. The system was trained with 41 EEG record-
ings and subsequently evaluated using an additional 20 recordings. Through
visual analysis, each recording was assigned to one of the following categories:
normal, iso-electric, low voltage, burst suppression, slowing, and EEGswith
generalized periodic discharges or seizure activity.
Results: 36 (88%) recordings from the training set and 17 (85%) recordings
from the test set were classified correctly. A user interface was developed to
present both trend-curves and a diagnostic output in text form. Implementation
in a dedicated EEG monitor allowed real-time analysis in the intensive care
unit (ICU) during pilot measurements in four patients.
Conclusions: We present the first results from a computer assisted EEG inter-
pretation system, based on a combination of eight quantitative features. Our
system provided an initial, reasonably accurate interpretation by non-experts
of the most common EEG patterns observed in neurological patients in the
adult ICU.
Significance: Computer assisted EEG monitoring may improve early detection
of seizure activity and ischemia in critically ill patients.
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Introduction
Evaluation of the brain function in patients from the intensive care unit (ICU)
is important, since these patients are at risk of several secondary brain injuries
such as (non-convulsive) seizures, cerebral ischemia and increased cerebral
pressure1,2. Clinical examination of these critically ill patients is however
limited, even more so when they are sedated and ventilated2–4. Monitoring
of the brain in these patients is therefore highly desirable. Neuroimaging pro-
vides good anatomical information, but its functional information is very often
limited and typically of a discontinuous nature2,5. Since the electroencephalo-
gram (EEG) is sensitive to changes in brain activity caused by both epileptic
seizures and ischemia, continuous EEG (cEEG) can provide a useful tool for
real-time brain monitoring1,2,4,6–9. Among others, Jordan et al. evaluated the
usefulness and clinical impact of cEEG monitoring in the neuroscience ICU.
They concluded that 86% of all cEEG recordings in the neuroscience ICU had
an impact on clinical management10.

Despite the potential clinical relevance of cEEG monitoring in the ICU, its use
in many ICUs remains limited. One of the main reasons for this involves the
complex and time-consuming task of interpretation of each recording by means
of visual analysis1,5,8. Raw EEG can hardly be interpreted by non-experts,
which includes most ICU nurses and ICU physicians. To overcome this prob-
lem, several attempts have been made in computer-assisted real-time detection
of deteriorations in brain function by extracting quantitative EEG (qEEG) fea-
tures from the raw data. Such systems make earlier diagnostics and treatment
possible. For example, various qEEG features have been proposed to detect
seizures11–14, to identify vasospasms after subarachnoid hemorrhage15,16, to
differentiate between patients with good neurologic outcomes and those with
poor outcomes after cardiac arrest17,18, and to predict the clinical outcome of
(sub-) acute stroke patients19–21. However, these features have only focused
on specific patient categories.

Ideally, all feature types should be combined into one overall system capable
of classifying the common EEG patterns observed in the ICU with reasonable
accuracy. This will allow unambiguous interpretation of the EEG by ICU per-
sonnel. The patterns to detect in the adult ICU should include normal EEGs,
iso-electric EEGs, low voltage EEGs, burst suppression patterns, EEGswith
regional or diffuse slowing (e.g. due to ischemia in post-anoxic and stroke
patients, contusions in trauma patients or postictal slowing), EEGs with seizure
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activity, and EEGs with generalized periodic discharges (GPDs). In addition,
an adequate representation of the information is required, providing relevant
information to ICU personnel in a simple and clear manner, while presenting a
more detailed analysis (including raw EEG data) to the consulting neurologist
or clinical neurophysiologist.

This paper describes the implementation of a real-time EEG classification
system based on a combination of several qEEG features. The creation of
such a system is a first step towards real-time, computer-assisted detection
of deteriorations in brain function, including seizure activity and ischemia in
critically ill patients.

Methods
Patient data
EEG data for training and evaluation was selected from the digital EEG
database of the Medisch Spectrum Twente hospital. All EEG registrations
in the database were classified by experienced electroencephalographers using
standard visual analysis. Both training and test set contained a representative
set of EEG patterns. At least one 5 min epoch was selected in each EEG,
reviewed by an experienced electroencephalographer (MvP) for a second time,
and assigned to one of the above described categories. Uniform epochs were
used so that each of them contained only a single EEG pattern. In addition,
only epochs with minimal or no artefacts were used (as judged from visual
inspection) with the exception of three. These three epochs contained many
artefacts and were used for an initial training step to detect artefacts. Theepoch
selection and second review by the electroencephalographer was doneprior to
the automated epoch classification by our system. Therefore, the classification
by the electroencephalographer was blinded to the output of the system.

All EEGs were recorded with 19 electrodes placed on the scalp according
to the 10–20 system. The impedances were kept below 5 kOhm to reduce
polarization effects and the sampling frequency was either 250 Hz or 256 Hz.
All recordings were made using a BrainLab EEG recording system (OSG
BVBA, Belgium) or Neurocenter EEG (Clinical Science Systems, Leiden,
Netherlands). The Institutional Review Board waived the need for medical
ethical assessment and informed consent, since all recordings were performed
as a standard procedure in the clinical evaluation of the patients.
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Training set
The training set consisted of 41 EEG epochs with a duration of 5 min each,
recorded from 39 different patients. Thirty-five of these patients were admitted
in the ICU, three were healthy outpatients with normal EEGs and one patient
was admitted to the stroke unit. To train the system for artefact detection, three
epochs were included that contained a considerable amount of artefacts.

Test set
An independent test set, containing epochs from different patients than in-
cluded in the training set, was used for the evaluation. Seventeen of these
recordings were from ICU patients and three were from outpatients. All se-
lected epochs contained artefact free, 5 min duration EEG data. To prevent a
selection bias, the test set was selected from the EEG database by a physician
who was naive for the current study. Details of the training and test set are
summarized in Tables 6.1 and 6.2.

Evaluation in the ICU
Real-time pilot measurements were performed in four ICU patients to evaluate
the technical feasibility of the classifier during real-time EEG registrations.

Feature extraction
The implementation of the system was divided into several steps. First, all
signals were filtered by a zero-phase 6th order butterworth bandpass filter
(from 0.5 to 30 Hz) and transformed to both source and longitudinal bipolar
montages. Subsequently, eight qEEG features were calculated. Based on these
features, a classification was made for every 10 s segment by using a decision
tree. Finally, a single interpretation for each 5 min epoch was determined.
All routines were implemented in Matlab (The Mathworks Inc.). A set of
features was calculated for each 10 s segment of EEG. Most features,except
for the Brain Symmetry Index (BSI) and burst and suppression index were
calculated after re-referencing the EEG to the source montage. To limit the
potential contribution of eye blink artefacts, the two most frontal channels Fp1
and Fp2 were discarded for these feature types. To calculate the burstand
suppression index, all 19 channels (including Fp1 and Fp2) were used. The
longitudinal bipolar derivations F4–C4, C4–P4, P4–O2, F3–C3, C3–P3, P3–
O1, F8–T4, T4–T6, T6–O2, F7–T3, T3–T5, and T5–O1 were used to calculate
the BSI. For both the burst and suppression index and the BSI, a single value
was obtained for the complete 10 s EEG epoch. This is in contrast with the rest
of the features, which provided a value for each individual channel separately.
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Table 6.1: Results of the training set. In column 3, “c” and “x” denotes correctly andin-
correctly classified epochs respectively. BS=burst suppression pattern, DS=diffuse slowing,
RS=regional slowing, GPDs=Generalized periodic discharges, PAE=post-anoxic encephalopa-
thy.

Patient no. EEG pattern Results Remarks

1–4 Normal c One ICU patient and three outpatients.
5–7 Iso-electric c Two EEGs had ECG artefacts.
8 Low voltage c
9 BS (with several types of

artefacts)
x Suppressions were missed because of

the artefacts. A correct warning about
artefacts was given.

10a BS (bursts contains EMG
activity)

c Interpreted as high frequency artefacts.

10b Same EEG as 10a, but after
an injection with a muscle
relaxant (Esmeron).

c Interpreted as a burst suppression pat-
tern.

11–13 BS c
14 BS x Interpreted as slowing, because most

(low amplitude) bursts were missed.
15–16 DS in a patient with PAE. c
17a DS+ RS in a neurotrauma

patient.
c

17b Same EEG as no. 17a, but a
few hours later after further
deterioration.

c

18–22 DS+ RS in a neurotrauma
patient.

c

23 DS in a neurotrauma patient.x One brain region was interpreted as
seizure activity instead of slowing

24 RS in a neurotrauma patient.c
25–26 DS+ RS in a post-surgical

patient.
c

27 DS+ RS in a stroke patient. c Measured in the stroke unit.
28 DS+ RS in a coma patient. c
29 DS+ GPDs in a patient with

PAE.
x (Low amplitude) GPDs were missed,

the DS was classified correct.
30 GPDs in a neurosurgery

patient.
c

31–34 GPDs c
35–36 Nonconvulsive status

epilepticus.
c

37–38 DS+ EMG artefacts. c
39 DS+ high amplitude

artefacts.
x Artefacts were interpreted as seizure ac-

tivity.
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Table 6.2: Results of the test set. In column 3, “c” and “x” denotes correctly and incorrectly
classified epochs respectively. BS=burst suppression pattern, DS=diffuse slowing, RS=regional
slowing, GPDs=generalized periodic discharges, PAE=post-anoxic encephalopathy.

Patient no. EEG pattern Results Remarks

1–2 Normal EEG c Measured in outpatients.
3–4 Iso-electric c
5 Low voltage EEG, but

normal EEG.
x ECG artefacts were interpreted as

bursts.
6 Low voltage EEG, but

normal EEG.
x Measured in an outpatient. Most epochs

were interpreted as normal and not as
low voltage.

7–10 BS c Two with long (>20 sec) and two with
short (<10 sec) interburst intervals.

11–12 DS in a patient with PAE. c
13–14 DS+ RS in a neurotrauma

patient.
c

15 DS+ RS in a coma patient. c
16 DS+ RS in a surgical

patient.
c

17 DS+ GPDs x GPDs were missed, the DS was classi-
fied correct.

18 GPDs c
19 Seizure activity and/or

GPDs.
c

20 Nonconvulsive status
epilepticus.

c

For the features based on the power spectrum, a power spectral densitywas
estimated using Welch’s averaged periodogram method. Each 10 s segmentof
EEG was windowed for each channel and detrended using a Hamming window
with a length of 512 sample points. The resulting spectra from each segment
were averaged and one spectral density with a resolution of approximately
0.5 Hz was obtained per channel.

Mean amplitude
The mean amplitude of the EEG was primarily used to classify iso-electric
EEGs and low voltage EEGs. In addition, signals with very high mean am-
plitudes were interpreted as containing either seizure activity or artefacts,de-
pending on the outcome of the other features. The mean amplitude of each
channel was calculated as the mean of the absolute value of that channel.
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Frequency analyses
The alpha to delta ratio (ADR)16,20,22and spectral edge frequency (SEFx)23

were used to detect slowing of the EEG patterns. The ADR is calculated as
the power ratio between the alpha (8–13 Hz) and delta band (0.5–4 Hz). The
SEFx is the frequency below which a certain percentage (denoted byx) of the
total power is located. In this study, the SEF90 was used and the total power
was defined as the power between 0.5 and 15 Hz. To detect high frequency
artefacts such as those caused by muscle contractions, we introduced a “high
to low frequency power ratio”: the power ratio between 25–30 Hz and 0.5–25
Hz.

Burst and suppression index
For the detection of burst suppression patterns and GPDs, a novel burst and
suppression index was introduced as illustrated in Figure 6.1. First, the signal
was pre-processed with a non-linear energy operator (NLEO), defined as

φ(n) = |(xn−1 · xn−2) − (xn · xn−3)| , (6.1)

wherexn denotes the current sample of signalx, xn−1 the first sample before
samplen, etc.14. This pre-processed signal shows which parts of the EEG
have a high local energy (high amplitude and/or high frequency). A moving
threshold was used to detect the energy increases in the signal. The running
threshold was set at four times the mean plus four times the standard deviation
of the preceding 0.5 s of the signal, with a minimum of 10µV2. After the
detection of a burst, the 0.5 s that followed were ignored to prevent a single
burst from being detected more than once. This was performed for all 19
channels. A burst was required to be present in more than 10 channels simulta-
neously (within a window of 0.2 s) to be classified as a true burst. Suppressions
were detected in a comparable way. The same NLEO was applied to the EEG,
but the threshold for the detection of suppressions was fixed at 5µV2. If the
amplitude of the signal was below this value for more than 1.5 s in 10 or more
channels at the same time, it was interpreted as a suppression. A 10 s epochof
EEG was interpreted as a burst suppression pattern if at least one burst and one
suppression were detected in that epoch. GPDs were detected with the same
method as the burst detection method. Generally, GPDs occur multiple times
in a 10 s epoch. Therefore, 10 s of EEG with three or more bursts and without
any suppressions were interpreted as GPDs.
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Figure 6.1: Burst and suppression index for one channel. The raw EEG is shown inthe upper
plot and the middle plot shows the same EEG after applying a NLEO (black) together with a
running threshold (red) for the detection of bursts. The threshold is based on the mean and
standard deviation of the previous 0.5 s of the signal. The detected burstsare marked with blue
asterisks. The bottom plot shows the same EEG after the NLEO was applied,but they-axis is
scaled. The red line in this figure represents the fixed threshold for the detection of suppressions.
A suppression is detected (marked with a blue asterisk) if the signal is belowthis threshold for
more than 1.5 s.

Nearest neighbor coherence
The nearest neighbor synchronization is the coherence between a particular
electrode and its surrounding (nearest neighbor) electrodes8. Since synchro-
nization is often increased during seizure activity, this feature was chosen as
one of the features for the detection of seizures. The nearest neighbor coher-
ence was implemented as the mean coherence between each channel and its
neighbors in the frequency range between 0.5 and 15 Hz.

Periodicity based on autocorrelation analysis
The periodicity of the EEG is often increased during seizures as well. To
detect epochs with an increased periodicity, a measure for periodicity wasused
based on autocorrelation. This was done similar to the method proposed by
Deburchgraeve et al. and Liu et al.14,24. First, the autocorrelation functions
for each window of 5 s were calculated with an overlap of 4 s. This was
done for all channels. The zero-crossings in these autocorrelation functions
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Figure 6.2: Autocorrelation of an EEG epoch with seizure activity. Intervals between the zero-
crossings of this autocorrelation are regular. The arrows indicate whichintervals are compared
(each interval is used twice

were then detected. To be classified as true zero-crossings, the maximum
autocorrelation value and the time interval between two zero-crossings had
to be larger than a given threshold. After detecting the zero-crossings,the
ratios between different zero-crossing intervals were calculated. An example
of this is shown in Figure 6.2. The mean value of these ratios was used as
a measure for the periodicity. The value approaches 1 for signals with high
periodicity and becomes higher or lower than 1 for signals without periodicity.
If less than four or more than sixty zero-crossings were present, the signal
was considered as non-periodic, and the measure of periodicity was notcal-
culated. Also, epochs with very low energy (mean value of a signal of less
than 2µV2 after applying NLEO) were ignored. The measure for periodicity
was calculated for each channel and for each 5 s window. The measures for
each window in a single epoch were averaged per channel and the ignored
epochs were discarded. This resulted in a single value per channel perepoch.
In some cases, all windows of a channel were ignored in the calculation. These
channels were then interpreted as non-periodic.

Brain Symmetry Index
The Brain Symmetry Index (BSI) was designed to detect asymmetries between
the left- and right hemispheres of the brain25–27. In this study, we used a pair-
wise derived variant of the BSI comparable to the variant recently introduced
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by Sheorajpanday et al.21. For this variant, the BSI is defined as

BSI(t) =
1

MK

M∑

ch=1

K∑

n=1

∣∣∣∣∣∣
Rn,ch(t) − Ln,ch(t)
Rn,ch(t) + Ln,ch(t)

∣∣∣∣∣∣ , (6.2)

with for channels in the right hemisphere, and a similar expression for channels
in the left hemisphere. Here,K is the number of Fourier coefficients andM is
the number of channel pairs, while denotes the Fourier coefficient with index
n of channelchevaluated at timet. Hereby,t corresponds to a particular epoch
[t − T, t] with durationT. A period of 10 s was used forT and the BSI was
calculated in the frequency range from 0.5 to 25 Hz with a spectral bandwidth
of 0.5 Hz. The BSI is bounded in range between zero (perfect symmetry for all
channels) and 1 (maximum asymmetry). The pairwise variant of the BSI was
used to increase the sensitivity for abnormalities that affect different regions
in both hemispheres (for example patients with traumatic brain injury). In
contrast to the study of Sheorajpanday et al., we used a bipolar longitudinal
montage in the calculation of the pair-wise derived variant of the BSI.

Classification: decision tree
To preserve relevant information about localization and time, our system clas-
sified each 10 s epoch in four defined brain regions: left anterior, leftposterior,
right anterior and right posterior. The left anterior region consisted ofchannels
F8, F4, Fz, T4, C4 and Cz, the left posterior region T3, C3, Cz, T5, P3, Pz and
O1, the right anterior region F7, F3, Fz, T3, C3 and Cz, and the right posterior
region T4, C4, Cz, T6, P4, Pz and O2. To obtain a classification per region,
the feature values of all channels in that region were averaged and used in the
decision tree. Since the periodicity measure did not necessarily have a value
for each channel, the third lowest value of all non-discarded channelsin each
brain region was used.

A decision tree was constructed based on the prior knowledge about EEG
patterns in several conditions as encountered in ICU patients. In this way,
we tried to mimic the way a neurologist would describe the EEG. After the
initial design, the decision tree was improved by using EEG recordings from
the training set. In several steps, the boundary values and the order ofthe
features were adapted to improve the outcome of the classified training set.
For each step, we analyzed which EEG patterns were classified incorrectly
and for what reason. Focus was not only placed on the percentage offalsely
classified patterns, but we also considered the severity of a misclassification in
clinical practice. For example, the detection of patterns with seizure activity
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Table 6.3: The most common EEG patterns and the quantitative EEG features used to classify
these patterns. The features are listed in the same order as they appear inthe decision tree.

EEG Pattern Quantitative EEG feature

Iso-electric Mean amplitude
Low voltage Mean amplitude
Artefacts High to low frequency ratio, mean amplitude
Burst suppression Burst and suppression index
GPDs Burst and suppression index
Seizure activity Autocorrelation, nearest neighbour synchronization,mean amplitude
Slowing Spectral edge frequency and alpha to delta ratio
Normal -

and slowing was implemented with a cut-off value which had a relatively high
sensitivity (and lower specificity), while it was decided to be more conservative
with the definition of an iso-electric EEG by limiting the sensitivity for that
category. Table 6.3 shows which features were eventually used to classify
each pattern. The final version of the decision tree was applied on the training
set again, and afterwards on the independent test set.

In general, the most discriminating features should appear first in the deci-
sion tree28. For our system, the mean amplitude was the most discriminating
feature; EEGs with very low mean amplitudes can only be iso-electric or low-
voltage and almost all other features cannot be defined reliably. Similarly,
EEGs with high mean amplitudes typically contain burst suppression patterns,
seizure activity or (high amplitude) artefacts. The mean amplitude was there-
fore the first feature evaluated in the tree. Subsequently, EEG epochs with
an increased “high to low frequency power ratio” were classified as epochs
with artefacts, since further classification of signals with many artefacts is
unreliable. Then, the presence of bursts and suppressions was evaluated to
detect burst suppression patterns and GPDs. If the signal did not contain any
bursts, the EEG was tested for seizure activity by evaluating the synchroniza-
tion, periodicity and amplitude. The seizure activity check was performed
after the detection of GPDs, since GPD patterns can also have an increased
amplitude, synchronization and periodicity. Two less specific features were the
SEF and ADR. Although they are very sensitive for the detection of slowing,
these features are only useful when other EEG abnormalities (such as seizure
activity) are excluded. For this reason, the SEF and ADR values were placed
at the bottom of the tree, to distinguish slowed EEG patterns from normal EEG
registrations. Diagrams of the full decision tree are presented in Figures 6.3
and 6.4.
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Figure 6.4: Decision tree for the detection of seizure activity. This tree represents thegray
colored “Seizure Activity Tree” blocks in the overall decision tree of Figure 6.3. This smaller
decision tree is used to detect whether an epoch contains seizure activity,and its output is
either “No” (no seizure activity) or “Yes” (seizure activity). This decision is made based on
a combination of synchronicity, periodicity and mean amplitude of the EEG signal. After this
decision, the remainder of the overall decision tree is used for the final categorization of the
epoch.

User interface
The output of the decision tree is displayed in a novel user interface. Theuser
interface of two epochs of the test set are shown together with a small part
of the raw EEG in Figure 6.5. The upper left part of the interface consists
of four plots, one for each brain region, with the output of the decision tree
as a function of the epoch number. In the two upper figures on the right
side, the trend of the BSI and the power spectrum of both hemispheres are
shown. Since asymmetries can only be measured when the activity of left and
right hemispheres are compared, the BSI cannot be calculated for eachbrain
region separately and is therefore displayed separately. In the bottom part of
the interface, the interpretation of the preceding 5 min recording is presented
in a textbox for each brain region separately. This interpretation is equal to
the most prevalent output of the decision tree for each brain region in this time
frame. Two exceptions are made for iso-electric EEGs and burst suppression
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A

B

Figure 6.5: Two examples of the user interface showing the results for two registrations of the
test set, together with a small part of the raw EEG. The results of the decision tree are displayed
in the interface as trend curves (upper panels) and in text (lower left panel). (ART=artefact,
Seiz=seizure activity, GPDs=generalized periodic discharges, Norm=normal, Slow=slowing,
Burst S=burst suppression, Low V=low voltage, Iso=iso-electric and BSI=Brain Symmetry
Index). A: User interface of a neurotrauma patient with diffuse slowing (patient no. 14). B:
User interface of an EEG epoch containing GPDs (patient no. 18).

patterns with long suppressions. To classify an EEG as iso-electric, all four
brain regions have to be iso-electric for the complete 5 min. If not, the EEG
is interpreted as low voltage. If most of the epochs were interpreted as iso-
electric or low voltage, and a few as burst suppression, the EEG was interpreted
as a burst suppression pattern with long interburst intervals.
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In addition to these outputs, a range of possibilities was introduced for the
interpretation of the BSI: EEGs were classified as “symmetric”, “slightly
asymmetric” or “asymmetric”. In a diffuse slowed EEG, the degree of diffuse
slowing (“severe slowing”, “slowing” or “moderately slowing”) was displayed
as well. Finally, the computer interpretation of the last 5 min was illustrated
using a color coded head. This head displays a brain region as red for seizure
activity or GPDs, gray for normal EEGs, blue for slowing, burst suppression
or low voltage EEGs, or black for iso-electric EEGs.

Implementation for real-time analysis
Our interpretation algorithms were implemented into the Neurocenter EEG
monitoring system of the Medisch Spectrum Twente (Neurocenter EEG, Clin-
ical Science Systems, Netherlands). Instead of using Matlab, the scripts were
executed in the GNU Octave open source platform (www.octave.org).

Results
The results obtained from evaluating the training set with the final version of
the decision tree are given in Table 6.1. In the training set, 36 out of 41 EEGs
(88%) were classified correctly. Two out of the five misclassifications canbe
explained by artefacts. One of them was an EEG with a burst suppression
pattern. The suppressions were not detected due to artefacts in the signal,
although a correct warning about the presence of artefacts was given. In the
other EEG, artefacts were wrongly interpreted as seizure activity insteadof
high amplitude artefacts. Two other misclassifications were caused by either
missing bursts or GPDs with low amplitudes. The final EEG was misclassified
in a single brain region, where slowing of the EEG was classified as seizure
activity, the other three brain regions were classified correctly as slowing.

After optimizing the decision tree with the training set, an evaluation was done
on a new independent test set. The outcome of this evaluation is shown in
Table 6.2. Seventeen out of twenty EEGs (85%) were classified correctly. Of
the three incorrect interpreted EEGs, two were low voltage EEGs. One of the
low voltage EEGs contained many ECG artefacts and these were interpreted as
bursts. This caused the EEG to be misclassified as a burst suppression pattern.
The second low voltage EEG was classified as normal. The last misclassified
EEG was caused by missing GPDs with low amplitude.

The real-time implementation of our system was evaluated in four ICU pa-
tients. Simulations in a Matlab environment showed that the algorithm was



6

Computer assisted EEG monitoring in the adult ICU 99

fast enough for real-time implementation; however the Octave implementation
of Neurocenter was much slower. In fact, the current Octave version of the
classifier allowed analysis of only the first 10 s of each 30 s in real-time, while
the other 20 s had to be discarded. The raw EEG data was stored without
interruption to be available for review by the consulting neurologist. No other
technical problems occurred during the measurements. For each of the four
registrations, the classifier showed satisfying correspondence between our sys-
tem and human interpretation. An example of the interface in a long term (4
h) registration is shown in Figure 6.6. At the beginning of the registration,
the EEG was mainly diffuse slowed with superimposed muscle contraction
artefacts. At the end of the EEG, the pattern showed GPDs and periods ofburst
suppression which was interpreted correctly by the classification algorithm.In
this particular case, this was initially noted by the interpretation of the user
interface. Subsequent reviewing of the raw EEG data indeed showed GPDs.
The patient was treated for a non-convulsive status epilepticus and recovered
well.

Discussion
Monitoring brain function in the ICU is very important, since ICU patients are
at high risk of various secondary brain injuries such as seizures or cerebral
ischemia. Although the EEG is very sensitive in detecting changes in the
neurological status of patients, cEEG monitoring in the ICU is limited due to
the fact that the signals are difficult to interpret by non-experts. A reliable real-
time classification system will reduce the drawback of the visual interpretation
burden and will facilitate the use of cEEG in the ICU. This should allow earlier
diagnosis of ischemic events and seizure activity. With the current availability
of treatments for acute ischemia, the early detection of cerebral ischemia (in
a reversible state) has great potential for infarct prevention6. Seizures after
brain injury are associated with a less favorable clinical outcome9,29, and early
detection and treatment can most likely improve the outcome. Early detection
of seizures with cEEG is therefore very relevant to protect the brain from
seizure-related injury in critically ill patients29,30.

In this study, we present an EEG classification system for monitoring ICU
patients, based on a combination of eight qEEG features. Thirty-six EEG
epochs out of 41 (88%) and 17 epochs out of 20 (85%) were classified correctly
in the training and test set respectively. These results indicate that the system
can have a significant impact in the clinical setting. For example, the group
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Figure 6.6: The user interface of a long EEG registration (>4 h) for patient no. 1. Initially,
the EEG shows a diffuse slowed pattern with many EMG artefacts. After a few hours it evolves
into GPDs and an occasional burst suppression pattern. The conclusion (represented as the color
coded map and in text) is based on the preceding 5 min of EEG. (ART=artefact, Seiz=seizure
activity, GPDs=generalized periodic discharges, Norm=normal, Slow=slowing, Burst S=burst
suppression, Low V=low voltage, Iso=iso-electric and BSI=Brain Symmetry Index).

of slowed EEGs was classified very well, showing that early detection and
treatment of ischemic events is possible. Although our algorithms do not yet
reach the classification accuracy of an experienced electroencephalographer,
it does allow for an initial evaluation by non-EEG experts and facilitates the
use of cEEG monitoring in the ICU. A regular review of the EEG data by
electroencephalograhpers remains of course an essential part in the decision
making process.

The two low voltage, but otherwise normal EEGs included in the test set were
both misclassified, most likely because of insufficient training the decision
tree on low voltage EEGs: only one low voltage EEG was included in the
training set. Because of this, the chosen boundary for the mean amplitude
between normal and low-voltage might have been chosen too low. In one of
the misclassified low voltage EEGs, many ECG artefacts were interpreted as
bursts and this was misclassified as a burst suppression pattern. The second
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low voltage (but normal) EEG was classified as normal; therefore the misclas-
sification would have had minimal clinical impact. Although great care was
taken to select artefact-free epochs, various registrations included in the test
set did contain artefacts. Most of the misclassifications were caused by the
presence of these artefacts or by missing low amplitude bursts or GPDs. We
tried to train the system in handling EEGs with artefacts by including three
registrations with artefacts in the training set. However, we are well aware that
the number of different artefacts is much larger than three and that the present
system is not sufficiently trained for all artefact types. As the reliable detection
of artefacts is highly relevant in the daily use of a system in the ICU, additional
improvements for the detection of artefacts are required.

It is well known that critically ill patients with GPDs have a poor prognosis
for survival, but at present it is not clear if treating or preventing GPDs will
lead to an improved outcome in these patients9,31–33. There is no consensus
regarding the need to treat GPDs or how aggressively they should be treated34.
Therefore, the clinical consequences of missing GPDs by the classifier are
unclear.

A novel interface for our classification system was presented. The textoutput
and color coded head in the interface allow a quick interpretation by non-
EEG experts. Extra panels in the interface present additional information to
the neurologist and clinical neurophysiologist, and the raw EEG data can still
be reviewed by the consulting neurologist or clinical neurophysiologist. The
dynamics of longer EEG registrations can be seen with a single glance at the
four time-curves representing the output of the decision tree for each ofthe
four brain regions.

In the comparison with the clinical evaluation, we used the output of the classi-
fier. Therefore, there was no additional visual interpretation of the trend curves
in the user interface. Of course, it is possible that the EEG shows significant
changes within 5 min which may limit the performance of the classifier. There-
fore, for our present evaluation we decided to use uniform EEG epochs.

The system was implemented in a dedicated EEG monitor suitable for real-
time analysis in the ICU. Pilot measurements performed in four neurological
ICU patients showed that the real-time use of the classification system at the
bedside of the patient is technically feasible. However, we note that the current
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real-time implementation of the classifier allowed analysis of the first 10 s
of each 30 s epoch only, while the other 20 s had to be discarded for com-
putational reasons. With more efficient routines, faster software, and higher
processing speeds, skipping epochs should not be necessary. Given the typical
time scales during which changes occur however, this does not seem to bea
critical issue. The evaluation of our system in four real-time registrations was
satisfying. Our first impression was that the performance in these registrations
was similar to those obtained in the offline analysis. An extended evaluation in
a larger group of ICU patients is currently in progress.

Similar to the observations presented in the study of Claassen et al.30, record-
ings in our patients showed that continuous monitoring is highly relevant to
reliably detect seizure activity. The use of cEEG registrations and computer
interpretation had an impact on the clinical decision making in all four of the
patients who were monitored in the ICU.

The classification accuracy of the test set and the results of the real-time
pilot measurements are encouraging, but it is clear that an evaluation on a
larger group of EEGs is needed for additional testing and improvements. The
addition of an alarm mechanism to the real-time monitor may also further
improve the clinical impact of the system. Integration with other clinical
measures such as blood pressure, temperature, intracranial pressure10, near-
infrared spectroscopy35, drug intake and video6,36 can further contribute to
improved brain monitoring in the ICU, ultimately resulting in the realization
of a multidimensional monitoring system37.

The main focus of our study was to explore whether computer assisted EEG
diagnostics can assist in the visual interpretation by experienced electroen-
cephalographers. We did not evaluate the reproducibility of the EEG classifi-
cation, although this is an important issue. Since the system has been trained
by labeled EEG data from the same department, it cannot excluded that there
is a particular bias in the classification. Therefore, training and evaluating the
system using a larger dataset of different centres may improve the performance
of the classifier.

In closing, we remark that most existing real-time EEG systems focus on the
detection of seizures or one specific EEG pattern. Particularly in neonates,
several automatic seizure detection systems have been proposed11,14,24,38,39.
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However, the EEG in neonates is not comparable to the EEG in adult patients.
What makes our system unique is that the classification of most common EEG
patterns encountered in the adult ICU is combined into one system. In addi-
tion, the classifier is patient independent and no patient specific boundaries or
parameters have to be set.

In conclusion, we present a decision tree using eight qEEG features to classify
the most common EEG patterns in the adult neurological ICU. This allows us
to differentiate between the most common EEG patterns: normal, iso-electric,
low voltage, burst suppression, focal or diffuse slowing, GPDs and seizure
activity. At present, we achieve a satisfying classification accuracy of 85%.
The monitoring system allows real-time classification and subsequent inter-
pretation by ICU personnel. Ultimately, this can contribute to an increased
use of real-time EEG monitoring in ICU patients, thereby allowing early de-
tection of neurological derangements and introducing the potential for early
interventions.
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Abstract
Introduction: EEG monitoring in patients treated with therapeutic hypothermia
after cardiac arrest may assist in early outcome prediction. Quantitative EEG
(qEEG) analysis can reduce the time needed to review long-term EEG, and
makes the analysis more objective. In this study we evaluated the predictive
value of qEEG analysis for neurological outcome in postanoxic patients.
Methods: In total 109 patients admitted to the ICU for therapeutic hypother-
mia after cardiac arrest were included, divided over a training and a testset.
Continuous EEG was recorded during the first 5 days or until ICU discharge.
Neurological outcomes were based on the best achieved Cerebral Performance
Category (CPC) score within 6 months. Twenty-seven out of 56 patients (48%)
of the training set and 26 out of 53 patients (49%) of the test set achievedgood
outcome (CPC 1–2). In all patients a 5 minute epoch was selected each hour,
and five qEEG features were extracted. We introduced the Cerebral Recovery
Index (CRI), which combines these features into a single number.
Results: At 24 hours after cardiac arrest, a CRI<0.29 was always associated
with poor neurological outcome, with a sensitivity of 0.55 (95% Confidence
interval (CI): 0.32–0.76) at a specificity of 1.00 (CI: 0.86–1.00) in the test set.
This results in a positive predictive value (PPV) of 1.00 (CI: 0.73–1.00) and
a negative predictive value (NPV) of 0.71 (CI: 0.53–0.85). At the same time
point a CRI>0.69 predicted good outcome, with a sensitivity of 0.25 (CI: 0.10–
0.14) at a specificity of 1.00 (CI: 0.85–1.00) in the test set, and a corresponding
NPV of 1.00 (CI: 0.54–1.00) and a PPV of 0.55 (CI: 0.38–0.70).
Conclusions: We introduced a combination of qEEG measures expressed ina
single number, the CRI, which can assist in prediction of both poor and good
outcome in postanoxic patients, within 24 hours after cardiac arrest.
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Introduction
Early prognosis in patients with postanoxic encephalopathy after cardiac arrest
is limited, especially due to treatment with mild hypothermia and sedation1,2.
In only 34–60% of patients treated with hypothermia after cardiac arrest,
consciousness will return3–5. Electroencephalography (EEG) monitoring may
assist in early prognosis6–9. However, analysis of long-term EEG registrations
is very time-consuming and can only be done by an experienced electroen-
cephalographer10–14. Furthermore, visual EEG interpretation will always be
partially subjective11,14.

Quantitative EEG (qEEG) analysis can reduce the time needed to review long-
term EEG, and makes the analysis more objective12–14. Additionally, qEEG
analysis can be used to reveal and display trends in EEG patterns over longer
time periods13. Thereby it can be used as a manner to study time constants of
improvement in the EEG. In a cohort of 30 patients Wennervirta et al. showed
that individual qEEG features such as the burst-suppression ratio, theresponse
entropy, and the state entropy differed between good and poor outcome groups
during the first 24 hours after cardiac arrest15. A response entropy of≤12.53
and a subband entropy of≤11.84 at 24 hours after cardiac arrest both had a
sensitivity of 78% and a specificity of 81% for predicting poor neurological
outcome15. These results are promising, and could possibly be improved by
using a combination of multiple qEEG features integrated as a single index.

In this study we analysed five qEEG features and combined these into the
Cerebral Recovery Index (CRI), which provides a single number thatcan be
used for prognostication in patients treated with mild hypothermia after cardiac
arrest.

Materials and Methods
Patients
From June 2010 to February 2013 we monitored all patients after cardiopul-
monary resuscitation, who were admitted to the ICU of our hospital (Medisch
Spectrum Twente, Enschede, The Netherlands) for therapeutic hypothermia.
A detailed description of patient inclusion criteria was already given in8. In
short, all adult patients (aged> 18 years), who were resuscitated after a cardiac
arrest, remained comatose, and were admitted to the intensive care unit (ICU)
to receive therapeutic hypothermia (at 33◦C, maintained for 24 hours) were
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included. Patients with additional neurological injuries were excluded. The
data of the first patients (from June 2010 to July 2011), which we also used
in our previous study on the evaluation of predictive value of visual analysis
of the EEG8, were used as training data to define qEEG features and optimize
parameter settings. The EEG recordings of the patients included after July
2011 were used as test data, and therefore only used for evaluation. The Insti-
tutional Review Board of the Medisch Spectrum Twente waived the need for
informed consent for EEG monitoring during ICU stay and for the follow-up
after 3 and 6 months by telephone. However, for additional electrophysiologi-
cal and clinical evaluation after discharge from the ICU in the first 60 patients,
local institutional review board approval and written informed consents were
obtained.

EEG recordings
EEG recordings were started as soon as possible after the patients’ arrival on
the ICU and continued up to 5 days or until discharge from the ICU. For
practical reasons, EEG recordings were not started late at night. Instead, for
patients admitted to the ICU after 11 PM, the recordings were started the next
morning at 7 AM. Twenty-one silver-silver chloride cup electrodes were placed
on the scalp according to the international 10–20 system. Recordings were
made using a Neurocenter EEG recording system (Clinical Science Systems,
Voorschoten, The Netherlands). All EEG analyses were performed offline.
EEG data played no role in actual prognostication of outcome or treatment
decisions. However, the treating physicians were not completely blinded to the
EEG to allow treatment of epileptiform discharges. Treatment of epileptiform
activity was left at the discretion of the treating physician. Generalized peri-
odic discharges were also interpreted as epileptiform activity, and treatedwith
anti-epileptic drugs. However, no treatment protocol existed for treatment,
since evidence for effect of treatment is lacking. Therefore, both the nature
and the intensity of treatment differed among physicians. In general, only
moderate levels of anti-epileptic drugs were given, and treatment never reached
an intensity to induce burst-suppression EEG and barbiturates were not used.

Selecting EEG epochs
EEG epochs of 5 minutes were automatically selected every hour during the
first 48 hours after resuscitation and every 2 hours during the remainder of the
registration. In this selection, the EEG epoch with the least number of artefacts
was chosen, after applying an artefact detection algorithm. In this algorithm,
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EEG data from 10 minutes before until 10 minutes after the selected time point
was assessed. The EEG data of these 20 minutes was divided into 30 seconds
segments. For each segment a value for the amount of artefacts was determined
by calculating the number of high voltage peaks (movement artefacts), the
power ratio between frequencies inside the EEG range and higher frequencies
(muscle activity), and the number of channels that contains zeros (unstacked
wires or loose electrodes). Finally, the ten consecutive segments with the
lowest summed artefact values were selected, resulting in a 5 minute epoch.
In EEG registrations with too many artefacts during the complete 20 minutes,
no epoch was selected for that selection moment.

Quantitative EEG features
First, all epochs were filtered by a zero-phase 6th order Butterworth bandpass
filter (0.5 to 30 Hz) and transformed to the source derivation. Subsequently,
the qEEG analysis was performed. Five features were used: the power, the
Shannon entropy, the alpha to delta ratio, the regularity (a feature we developed
to distinguish burst-suppression patterns from continuous EEG patterns), and
coherence in the delta band. These features were motivated by the criteria
which a neurologist evaluates during visual analysis of an EEG. After calculat-
ing the values of the five qEEG features, all features were normalized between
0 and 1 with a smooth exponential function, and combined into one overall
score, the Cerebral Recovery Index (CRI).

All qEEG features, except the feature for regularity of the amplitude, were
first calculated per EEG channel and per 10 seconds segment separately and
subsequently averaged over time and over all channels. The regularity feature
was calculated per channel for the complete 5 minutes at once, and then aver-
aged over all EEG channels.

Power: To quantify the power of the EEG, the standard deviation (S D) of
the EEG was calculated. As the mean of the signal can be expected to be
negligibly small after filtering, the SD is equivalent to the mean power of the
signal.

Shannon Entropy: An analytical technique to quantify the irregularity of a
stochastic signal is entropy. Overall, entropy describes the complexity, or
unpredictability of a signal. In this study we used the Shannon entropy (HS h),
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first defined by Shannon and Weaver as:

Hsh = −
N∑

i=1

p(xi)log2p(xi), (7.1)

wherexi is the amplitude of the signal andp(xi) the probability of its occur-
rence in the signal segment16,17). The probability density functionp(xi) was
estimated by using the histogram method where the amplitude range of the
signal was linearly divided into bins (from –200µV to 200 µV, with a bin
width of 1µV.)

Alpha to delta ratio: The alpha to delta ratio (ADR)13,18–20 was calculated
as the power ratio between the alpha (8–13 Hz) and delta frequency band(0.5–
4 Hz). To calculate this power ratio, a power spectral density was estimated
using Welch’s averaged periodogram method using a Hamming window with
a length of 2 s resulting in a spectral density estimation with a resolution of 0.5
Hz.

Regularity: To separate burst-suppression patterns from continuous EEG pat-
terns (with a regular, constant amplitude) we developed a feature to evaluate
the regularity of the amplitude of a signal. In Figure 7.1 we present two signals
as an example. Figure 7.1A shows a signal with a high variance in amplitude
and Figure 7.1B a signal with more regular amplitude. In this technique we
first squared the signal and applied a moving average filter with a window of
0.5 s to create a non-negative smooth signal. The window length of the moving
average was set at 0.5 s. A longer window would average out the differences in
activity between subsequent bursts and suppressions, while a shorterwindow
length would not average out the individual peaks within one burst. Subse-
quently, we sorted the values of the smoothed signal in “descending” order
(see Figure 7.2). The normalized standard deviation of this sorted signal was
then calculated as a feature for regularity (REG) in amplitude of the data:

REG=

√√ ∑N
i=1 i2q(i)

1
3N2∑N

i=1 q(i)
, (7.2)

with N the length of the signal in samples andq the sorted signal. The nomina-
tor calculates the standard deviation of the sorted signal, which is normalized
in a range between 0 and 1 by the denominator. The REG value of a signal
with constant amplitude is 1, independent of the amplitude of the signal. A
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A

B

Figure 7.1: Example of two signals with different variance in amplitude. The signal in A
shows two short periods with high amplitude on a zero background, the variance in amplitude
in this signal is relatively high, while the signal in B has a more regular or constant amplitude.
The signal in A can be compared with an EEG showing a burst suppression pattern, while the
signal in B can be compared with an EEG with continuous amplitude. This is expressed in the
regularity index (cf. Equation 7.2 and Figure 7.2).

signal with relatively low amplitude (suppression) that contains a short period
of higher amplitude (burst) will have a value close to zero; if there are more
or longer bursts the REG value will increase. Two examples of this technique
applied on EEG data showing a burst-suppression pattern and a normal EEG
pattern are given in Figure 7.2 A and B respectively. Note that the REG value
for the burst-suppression EEG (Figure 7.2A) is lower than of the normal con-
tinuous EEG (Figure 7.2B), indicating that the burst suppression EEG shows
more spread in amplitude.

Coherence in the delta band: To quantify EEG patterns with an abnormal high
synchronization level, the mean coherence (COH) in the delta band (0.5–4 Hz)
between all possible combinations of EEG channels was implemented. In the
calculation of the coherence we used a Hann window with a length of 4 s and
an overlap of 2 s.

Feature Combination
Finally, the five qEEG features were combined into a single number, the Cere-
bral Recovery Index (CRI). First the value of each qEEG feature was normal-
ized in the range from 0 to 1, with 0 corresponding to a pathological EEG
and 1 corresponding to a physiological EEG. These normalized qEEG scores
(annotated with a hat) are schematically displayed in Figure 7.3 and expressed
as:

Ŝ D= 1/(1+ e−2(S D−2.5)), (7.3)
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Figure 7.2: Calculating the regularity of the amplitude (REG) in an EEG showing a burst
suppression pattern (A) and a diffusely slowed pattern (B). In the top graphs, the raw EEG
is shown (black), together with the EEG after squaring and applying a moving average filter
(with a window of 0.5 s) (blue). In the bottom graphs, the signalq is obtained after sorting
this smoothed signal in decreasing order. The calculated value for the regularity (REG) is the
normalized variance of this sorted signalq (cf. Equation 7.2). REG is normalized from 0–1,
where a higher value corresponds to a signal with a more regular amplitude as illustrated.

ĤS h= 1/(1+ e−9(HS h−2.5)), (7.4)

ÂDR= 1/(1+ e−10(ADR−0.5)), (7.5)

R̂EG= 1/(1+ e−10(REG−0.65)), (7.6)

and
ĈOH = 1/(1+ e10(COH−0.45)). (7.7)
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Figure 7.3: Normalized qEEG scores. All five qEEG values are normalized using a smooth
sigmoid function (Equations 7.3–7.7), resulting in score for each feature (annotated with a hat)
between 0 and 1. (S D=standard deviation,HS h=Shannon entropy,ADR=alpha to delta ratio,
REG=regularity,COH=coherence.)

The values for the parameters in these expressions were set after visual inspec-
tion of the data of the training set. We did this for each feature independently,
selecting the data that was most relevant for that specific feature. For example,
for the REG feature we compared burst-suppression EEGs with normal EEGs
showing continuous activity, while for theS Dfeature we compared iso-electric
and low-amplitude EEGs with continuous EEGs.

As the power of an EEG signal is a requirement for a normal EEG - if there
is no power at all, the EEG is flat and all other features are useless - in the
combined score, (̂S D) was multiplied with the mean of the other four qEEG
scores. However due to the sigmoid shape of the curve forŜ D (Equation 7.3,
Figure 7.3), the value of the CRI is independent for further changes in power
once the power has reached a certain minimal threshold; above a mean ampli-
tude of 5µV the value of thêS Dgoes to 1. The resulting expression for the
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CRI is:

CRI = Ŝ D


ĤS h+ ÂDR+ R̂EG+ ĈOH

4

 . (7.8)

To evaluate the time dependency of the CRI, we introduce a ”recovery func-
tion”, R(t), expressed as:

R(t) = a0 + a1H(t − δ)(1− e−(t−δ)/τ), (7.9)

with H the Heaviside or step function. The constantsa0 anda1, delayδ and
time constantτ were estimated using the median values of the CRI, both for
patients with good and poor neurological outcome.

Outcome Assessment
Neurological outcome assessment was performed at 3 and 6 months after car-
diac arrest during a personal meeting or based on a telephone call, and was
always performed by the same author (MT-C). The primary outcome measure
was the best score within 6 months on the five-point Glasgow-Pittsburgh CPC
scores21. Outcome was dichotomized between “good” and “poor”. A good
outcome was defined as a CPC score of 1 or 2 (no or moderate neurological
disability), and a poor outcome as a CPC score of 3, 4, or 5 (severe disability,
comatose, or death).

Statistical Analysis
Collected baseline characteristics include age, sex, weight, location of cardiac
arrest (in-hospital vs. out-of-hospital), cause of cardiac arrest, and initial car-
diac rhythm. Also information about the administered sedative (propofol and
midazolam) and analgesic (fentanyl and remifentanyl) drugs and their maxi-
mum dose within the first 24 hours were collected. Statistical analysis for the
variables that were categorical was performed using a Pearson chi-square test
when no subgroup had an expected count less than 5, else a Fisher’s exact test
was performed. For continuous variables an independentt-test was applied
after confirming that these variables were normally distributed.

At 12, 18, 24 and 36 hours after cardiac arrest, we determined the areaunder
the curve (AUC) of the receiver operating characteristic (ROC) curve. Fur-
thermore we defined at each of these time points two thresholds for the CRI
score, one corresponding to a 100% specificity for predicting poor neurological
outcome and one corresponding to a 100% specificity for predicting good neu-
rological outcome. For each threshold we calculated the sensitivity, specificity,
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positive predictive value (PPV) and negative predictive value (NPV),and their
95% confidence intervals (CI).

Results
In total 109 consecutive patients were included in the study. The first 56 pa-
tients were used as the training set and the remainder 53 patients were included
in the test set. In the training set, 27 out of the 56 patients (48%) had good
neurological outcome (best CPC score≤2 within 6 months). In the test set,
26 out of the 53 patients (49%) had good neurological outcome. Additional
patient information of the training set is given in8. Table 7.1 summarizes the
patient characteristics of the test set. Both in the training and test set group,
patients with good neurological outcome and patients with poor neurological
outcome were sedated at same dosage levels. However, in the test group,
patients with good neurological outcome received a slightly higher dose of
propofol in comparison to patients with poor neurological outcome (Table 7.1).

Figures 7.4A and 7.4B show the median CRI values of patients with good and
poor neurological outcome and their corresponding ranges. Figure 7.4A show
the results of the training set and figure Figure 7.4B for the test set. In boththe
training and test set patients with good neurological outcome have an overall
higher CRI than the group of patients with poor neurological outcome. We
obtained a reasonable fit of the mean CRI values using the recovery function
given by Equation 7.9. Note that the largest difference between the fitted re-
covery curves is present between 6 and 24 hours after cardiac arrest. The time
constantτ is substantially larger in the patients with poor neurological outcome
(τ=14.2 in the training set andτ=20.2 hours in the test set) in comparison to
the patients with good neurological outcome (τ=6.4 in the training set and
τ=4.5 hours in the test set), indicating that the EEG of patients with good
neurological outcome shows a faster improvement.

Tables 7.2a and 7.2b show the results for predicting poor outcome at 12, 18, 24
and 36 hours after cardiac arrest. Table 7.2A shows the results for the training
set and Table 7.2B for the test set. At 18 or 24 hours, the CRI performs best.
At 24 hours after cardiac arrest, a CRI≤0.29 was always associated with poor
neurological outcome, with a sensitivity 0.55 (CI: 0.32–0.76) at a specificity
of 1.00 (CI: 0.86–1.00) in the test set. This results in a PPV of 1.00 (CI: 0.73–
1.00) and a NPV of 0.71 (CI: 0.53–0.85). At the same time point a CRI>0.69
can be used for predicting good outcome, with a sensitivity of 0.25 (CI: 0.10–
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Figure 7.4: Values of the Cerebral Recovery Index (CRI) for the training (A) andtest (B)
set. The green and red dots are the median values for patients with good and poor neurological
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Table 7.1: Comparison of patient characteristics between the patients with good neurological
outcome and poor neurological outcome in the test set. Medication doses are given as the max-
imum drug dose during the first 24 hours. (CPC=Cerebral Performance Category, CA=Cardiac
arrest)

Poor neurological
outcome (CPC 3–5)

Good neurological
outcome (CPC 1–2)

p-
value

Number of patients 27 26 -
Number of male 19 (70%) 20 (77%) 0.59
Age (years) 63 (std 13) 58 (std 11) 0.14

(range: 27 to 82) (range: 35 to 79)
Number of OHCA 23 (85%) 23 (89%) 1.00
Initial Rhythm 0.00

VF 8 (30%) 23 (89%)
Asystole 14 (52%) 0 (0%)
Bradycardia 1 (4%) 0 (0%)
Unknown 4 (15%) 3 (12%)

Presumed cause of CA 0.57
Cardiac 17 (63%) 17 (65%)
Other origin 6 (22%) 3 (12%)
Unknown 4 (15%) 6 (23%)

Patients sedated with propofol 27 (100%) 26 (100%) -
Propofol dose (mg/h/kg) 2.8 (std 1.0)

(range: 0.9 to 4.8)
3.4 (std 1.0)

(range: 1.3 to 5.4)
0.03

Patients sedated with midazolam 8 (30%) 6 (23%) 0.59
Midazolam dose (µg/h/kg) 80 (std 65)

(range: 30 to 214)
73 (std 35)

(range: 33 to 125)
0.84

Patients treated with fentanyl 18 (67%) 19 (73%) 0.61
Fentanyl dose (µg/h/kg) 1.5 (std 0.8)

(range: 0.6 to 3.6)
1.9 (std 0.7)

(range: 0.9 to 2.7)
0.13

Patients treated with remifentanil 11 (41%) 7 (27%) 0.29
Remifentanil dose (µg/h/kg) 4.0 (std 2.6)

(range: 1.0 to 7.0)
5.5 (std 3.0)

(range: 3 to 11)
0.28

0.14) at a specificity of 1.00 (CI: 0.85–1.00) in the test set, and a corresponding
NPV of 1.00 (CI: 0.54–1.00) and a PPV of 0.55 (CI: 0.38–0.70).

Discussion
There is growing evidence that EEG monitoring can play a significant role in
the prediction of neurological outcome in patients treated with hypothermia
after cardiac arrest6–9. In addition to prognostic parameters based on visual
interpretation of the EEG, we introduce the “Cerebral Recovery Index”(CRI)
based on five qEEG features that grades the EEG patterns as observedin
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patients after cardiac arrest. This index may assist in the prediction of neu-
rological outcome after cardiac arrest. The advantage of a combined qEEG
feature is that it is very simple to use and trends in long term EEG recordings
can easily be studied, while it still covers more than one aspect of the EEG.
We evaluated the CRI in a training group of 56 patients and a test group of 53
patients treated with hypothermia at the ICU after cardiac arrest.

Although many features can be extracted from EEG data11,13,18,22, only five
were used in this study. The selection of features was motivated by the EEG
characteristics that neurophysiologists evaluate in visual interpretation ofEEG
in patients after cardiac arrest. Subsequently, the features were combined into
a single number: the Cerebral Recovery Index (CRI). For a proper evaluation
of the CRI, we used an independent training and test set.

CRI scores are higher in patients with good outcome in comparison to pa-
tients with poor outcome and can be used to divide patients into three groups.
The first group (green area in Figure 7.4) only includes patients with good
neurological outcome: at 24 hours after cardiac arrest, 25% of the patients
with good neurological outcome are in this group. The second group (red
area in Figure 7.4) only includes patients with poor neurological outcome, at
24 hours after cardiac arrest, this group includes around 55% of all patients
with poor neurological outcome. The last group (the grey area) in Figure7.4)
includes patients with good as well as with poor neurological outcome. The
first and second group are of the most interest, since outcome prediction is
100% reliable in these patients.

The median values of the CRI of both groups of patients increased over time.
However, the time constant in the recovery functionR(t) of patients with good
neurological outcome is much smaller than in patients with poor neurological
outcome. This implies that the EEGs of patients with good neurological out-
come improve faster than those of patients with poor outcome. We also showed
that the CRI at 18 and 24 hours after cardiac arrest has a higher prognostic
value in comparison to the values at 12 or 36 hours after cardiac arrest. This is
similar to the time course reported in our previous study using visual analyses8.
Therefore, it is important to start the EEG registration within the first 24 hours
after cardiac arrest for maximal diagnostic yield. The CRI threshold for the
prediction of poor outcome with a 100% specificity increases from a value of
0.02 to 0.29 in the period 12-24 hours. This reflects the evolution in EEG
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patterns, in agreement with visual inspection. For instance, an iso-electric
EEG in the first hours after cardiac arrest is observed both in patients witha
good and poor outcome6,8. Such an iso-electric EEG will have a very low
CRI score of almost zero, since the feature for the amplitude is multiplied with
the summed values of the other four features. In all patients with good neu-
rological outcome, iso-electric EEG patterns, if initially present, will evolve
within 24 hours to a burst-suppression or a continuous EEG pattern8. This is
reflected by a CRI score of ¿0.69 at 24 hours. The interpretation of the EEG for
prognostication, either quantitative with the CRI or with visual interpretation,
must, therefore, be related to the time since cardiac arrest. We used 5 minute
epochs of EEG with the least amount of artefacts every hour or every two
hours to limit the influence of artefacts on the CRI score. As the EEG patterns
of patients after cardiac arrest in general evolve over hours8, this interval is
sufficient to track relevant changes.

The thresholds for the CRI slightly varied between the training and test set.
For predicting poor outcome at 24 hours the threshold decreased from 0.35 to
0.29, while for predicting good outcome at 24 hours the threshold increased
from 0.61 to 0.69. A larger test set is necessary to evaluate the thresholds
of the CRI before application in the clinical setting. Additional improvement
might be the reduction of the irregularity in the border between the grey and
green area (representing a 100% specificity for predicting good outcome) in
Figure 4. Since changes in the EEG typically occur slowly and continuously
over time, this border should be smoother. The peaks in the border betweenthe
green and grey area are therefore non-physiological. At some points intime
the green and grey area even completely overlap. This was caused by high
amplitude and high frequency muscle artefacts, resulting in erroneously high
CRI values in some patients with poor outcome, illustrating that in some pa-
tients our automated selection of artifact free EEG epochs was not sufficiently
accurate.

Our method is completely automated, including the selection artefact free data.
However, the automatic selection of artefact free data is not perfect, yet.An
expert is needed to verify that the selected EEG epoch is indeed artefactfree
to assure that the CRI value is reliable. Therefore, quantitative EEG analysis
can reduce the time needed to review long-term EEG and make interpretation
more objective. However, it is primarily aimed to assist in the interpretation
instead of replacing the visual analysis of the EEG by an expert neurologist.
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The EEG registrations were accessible for the treating physicians at the ICU to
allow treatment of epileptiform discharges. This could potentially have influ-
enced decision making. However, the local protocols about patient treatments
were strictly followed. As presently the EEG of the first 24 hours is not in-
cluded in the Dutch guidelines, these findings were never used in the decision
making. An absent SSEP during normothermia was a reason to stop treatment
according to current guidelines. Other findings to stop treatment included
absence of both pupillary light and cornea reflexes at day three after cardiac
arrest, or an iso-electric or low-voltage EEG at day three. In patients with a
motor score>4, or in patients that showed clinical improvement, treatment
was never stopped. The CRI values were calculated offline after inclusion of
all patients, and were therefore not available for the treating physicians.The
likelihood of a self-fulfilling prophecy is thus very small. Also, the dichotomi-
sation of continuous variables using a threshold has its limitations23. A larger
test set is necessary to evaluate the thresholds of the CRI before application in
a clinical setting. Evaluation in a larger population may also result in change of
thresholds, which could make it less suitable for decisions that require 100%
accuracy. In clinical practise, therefore, in the interpretation of the CRIthe dif-
ference of the index from threshold should also be taken into account. Another
limitation might be that all patients were sedated during the hypothermic phase
with propofol and in some cases additionally with midazolam in a low dose,
which could have influenced the EEG registrations. However, both in this and
our previous study8, we showed that at group level patients with good neu-
rological outcome and patients with poor neurological outcome were sedated
at same dosage levels. In the test group described in this study, patients with
good neurological outcome even received a slightly higher dose of propofol
in comparison to patients with poor neurological outcome. Although propofol
may have a neuroprotective effect, this has only been shown in in vitro and
in vivo established experimental models of acute cerebral ischemia24,25. No
clinical data exist that establish neuroprotection by propofol in humans26–28.
In our study, the mean difference in propofol dosage between the group of poor
and good neurological outcome is small. The main reason for the difference
in propofol dosage used is probably that the postanoxic encephalopathy in
patients with good neurological outcome was less severe, resulting in more
muscle activity. Therefore, a higher dosage of propofol was neededto limit
shivering. This might indicate that the temperature regulation is less affected
in patients with good neurological outcome29. Furthermore the improvements
in EEG patterns were already visible within the first 24 hours after cardiac
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arrest, while patients were still treated with hypothermia and received sedative
drugs. Therefore, it is very unlikely that the changes in EEG can be explained
by the use of sedative drugs.

Conclusions
We introduce the Cerebral Recovery Index (CRI) to quantify and grade contin-
uous EEG data of patients after cardiac arrest. The CRI can assist in prediction
of both poor and good neurological outcome within 24 hours after cardiac
arrest.
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Abstract
Objective: Generalized periodic discharges (GPDs) can be observedin the
electroencephalogram (EEG) of patients after acute cerebral ischemia and re-
flect pathological neuronal synchronization. Whether GPDs represent ictal
activity, which can be treated with anti-epileptic drugs, or severe ischemic
damage, in which treatment is futile, is unknown. We hypothesize that GPDs
result from selective ischemic damage of glutamatergic synapses, which are
known to be relatively vulnerable to effects of ischemia.
Methods: We employed a macroscopic model of cortical dynamics in which
we increasingly eliminated glutamatergic synapses. We compared the output
of the model with clinical EEG recordings in patients showing GPDs after
cardiac arrest.
Results: Selective elimination of glutamatergic synapses from pyramidal cells
to inhibitory interneurons led to simulated GPDs whose waveshape and fre-
quency matched those of patients showing GPDs after cardiac arrest. Mere
reduction of glutamatergic synapses between pyramidal cells themselves did
not result in GPDs.
Conclusion: Selective ischemic damage of glutamatergic synapses on in-
hibitory cortical interneurons leads to the generation of ischemia induced
GPDs. Disinhibition of cortical pyramidal neurons is a candidate mechanism.
Significance: This study increases the insight in the pathophysiological mech-
anisms underlying the generation of GPDs after acute cerebral ischemia.



8

GPDs after ischemia reflect selective synaptic failure 131

Introduction
Generalized period discharges (GPDs) are frequently encountered during elec-
troencephalography (EEG) monitoring in comatose patients after cardiac ar-
rest. GPDs are defined as synchronous bihemispheric, repetitive discharges
of similar morphology with quantifiable, nearly regular, interdischarge inter-
vals1–4. GPDs reflect pathological neuronal synchronization and are often
associated with seizure activity3,5. However, it is unclear whether GPDs af-
ter ischemia are a true form of ictal activity5,6. In some literature prolonged
periods (>30 min) of GPDs in comatose patient are interpreted as a form of
(non-convulsive) status epilepticus7,8. No standard of care exists in these pa-
tients, since it is unknown whether early and aggressive treatment of comatose
patients showing GPDs after ischemia improves outcome5,6,8,9. Most of these
patients have poor outcome, with death in most cases and persistent vegetative
state in few survivors7,8. GPDs therefore might rather be an expression of
severe (often irreversible) ischemic damage, in which treatment is futile5,10,11.
However, some examples of patients with good outcome after treatment with
anti-epileptic drugs exist12. Better understanding of the pathophysiological
processes leading to ischemia induced GPDs may clarify why some patients
respond to treatment, but most of them do not.

Failure of synaptic transmission is an early consequence of cerebral ischemia
and is reflected by changes in the EEG13–16. Although initially reversible, irre-
versible synaptic damage may occur if blood flow is not restored promptly16.
Experimental studies in rat hippocampal slices showed that glutamatergic
synapses are more vulnerable to ischemia than GABAergic17. This selective
ischemic vulnerability of glutamatergic synapses to inhibitory, GABAergic,
interneurons first leads to elimination of inhibitory cortical input17–19.

Here we study the effect of selective ischemic synaptic damage on EEG pat-
terns, with an established macroscopic computational model20. The model’s
output is the membrane potential of cortical pyramidal neurons, averagedover
a macrocolumn. Thereby, the model provides a natural link with the EEG,
which reflects currents within pyramidal apical dendrites, averaged over small
pieces of cortical tissue21–23. This model has contributed to the understanding
of diverse EEG phenomena, such as spontaneous rhythms, epileptic seizures,
and anesthesia-induced changes24–29.
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We hypothesize that selective ischemic damage of glutamatergic synaptic input
to inhibitory interneurons results in pathological neuronal synchronization,
reflected as GPDs on the EEG. To test this hypothesis we study increasing
elimination of these connections on simulated EEG patterns in our compu-
tational model. We discuss the implications of our results with regard to the
pathophysiological mechanism leading to GPDs, including the presumed effect
of treatment with anti-epileptic drugs.

Methods
Clinical data
We selected EEG recordings showing GPDs from a previously published pro-
spective cohort study on the prognostic value of continuous EEG registrations
in 56 comatose patients treated with hypothermia after acute global cerebral
ischemia resulting from cardiac arrest30.

EEGs were measured in one of the two intensive care units of the Medisch
Spectrum Twente hospital (Enschede, The Netherlands) using 21 silver–
silverchloride cup electrodes placed on the scalp according to the international
10–20 system. Recordings were made using a Neurocenter EEG recording
system (Clinical Science Systems, Voorschoten, The Netherlands). All signals
were filtered by a zero-phase 6th order Butterworth bandpass filter from 0.5 to
30 Hz. EEGs were independently described by two authors (MT-C and MvP).
In case of disagreement, the final classification was decided by consensus.
GPDs were defined as any pattern of synchronous, bilateral, repetitivedis-
charges of similar morphology with nearly regular interdischarge intervals3,4.
Besides EEG, in all patients daily somatosensory evoked potential (SSEP)
recordings were made after bilateral electrical stimulation of median nerve
using a Nicolet Bravo system (Viasys, Houten, The Netherlands).

Modeling cortical dynamics and synaptic failure
We employ the computational model of cerebral dynamics described in Liley
et al.20. The model comprises the two major neuron types found in cortical
tissue: pyramidal neurons and inhibitory interneurons. Both neuron types
receive input via intra-cortical synaptic projections as well as non-specific
excitatory input from regions not explicitly incorporated into the model, such
as the thalamus. This synaptic organization is illustrated in Figure 8.1(a) and
(b). Pyramidal neurons excite both themselves and inhibitory interneurons
through glutamate-mediated synapses. Interneurons inhibit both themselves
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A B

Figure 8.1: Structure of the cortical meanfield model. A, The model comprises pyramidal and
inhibitory neurons with their respective local synaptic projections, as wellas thalamic afferents.
B, The meanfield model reduces the microscopic cortical circuitry to variables averaged over a
macrocolumn, resulting in mean neuron types and mean synaptic projections.

and pyramidal neurons through GABA-mediated synapses. The EEG signal
is modeled by the mean membrane potential of the pyramidal neurons, which
are known to be approximately proportional to each other20. At baseline, we
choose the model parameters as in Liley et al.20, for which the simulated EEG
displays alpha oscillations. The model equations and baseline parameters are
given in Appendix A.

To model ischemia-induced glutamatergic synaptic damage, we increasingly
reduced the number of functioning glutamatergic synapses. These excita-
tory glutamatergic synapses connect the pyramidal cells with the inhibitory
interneurons as well as with the excitatory pyramidal cells themselves. A
differential vulnerability between these two collections of synapses is incorpo-
rated into the model by independently reducing the number of synapses from
excitatory pyramidal cells to inhibitory interneurons (Nei) and the number of
synapses between excitatory pyramidal cells (Nee). The simulated EEG signals
were classified into normal activity, GPDs or low voltage. In this classification
of simulated EEG data, GPDs were defined similar as for the clinical regis-
trations, with an additional requirement of an amplitude above 10 mV. The
simulated EEG was classified as low voltage when the complete signal was
below 0.25 mV. We visually compared the simulated EEGs with the clinical
EEGs with regard to waveshape (duration and steepness) and frequency.
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Figure 8.2: Generalized periodic discharges measured in eight comatose patients (a–h) after
acute global cerebral ischemia due to cardiac arrest (left) with corresponding power spectra
(right). The dominant frequency ranges from 1 to 3 Hz.

To test the stability of our results we varied three of the other parameters in the
model and studied the effect on our results. We varied the standard deviation
of non-specific fluctuations to excitatory cells (σp

ne) in a range of 90–110% of
the original value. The spike thresholds (Vspike

e Vspike
i ) were varied in a range

of 95–105% of their original values.

Results
Clinical data
GPDs were seen in eight patients (14%, Figure 8.2). In all patients the early
cortical (N20) SSEP response was preserved.

Model
The model generates an alpha rhythm when all synapses are intact (Figure 8.3).
If Nee is kept unchanged at 100%, a decrease ofNei to 96–63% results in GPDs
in the simulated EEGs. LowerNei results in GPDs with a higher frequency.
ReducingNei below 63% rapidly results in complete depression of simulated
cortical activity. Mere reduction ofNee does not result in GPDs.

A 2D diagram wereNei is varied along thex-axis andNee is varied along the
y-axis is presented in Figure 8.4. This shows that the simulated EEG pattern is
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Figure 8.3: Examples of simulated EEG patterns obtained after gradually reducing the number
of glutamatergic synapses from pyramidal cells to inhibitory interneurons(Nei). All other
parameters, including the number of glutamatergic synapses between pyramidal cells (Nee),
were unaffected. IfNei=100%, the model shows alpha activity (top). If 63%≤Nei≤96%, the
model shows GPDs. If this number is further reduced, the activity rapidly reduces to a very low
amplitude signal (bottom).

dependent on the ratio betweenNei andNee, where GPDs, can only be present
if Nei is lower (more affected) thanNee.

Simulated and clinical GPDs show similar sharp periodic discharges with
faster, low-amplitude activity in between (Figure 8.5). The power spectra of
both signals have similar peak frequencies, with a dominant frequency of 1–
3 Hz. However, the clinical EEG signals with GPDs show more variability of
peaks and have less sharp negative deflections than the simulated ones.

Variation of the non-specific fluctuations to excitatory cells (σ
p
ne) in a range of

90–110% of the original value did not have any effect on the results. Variation
of the spike thresholds (Vspike

e and Vspike
i ) in a range of 95–105% of their

original values caused a shift in the borders of Figure 8.4 between the areas
corresponding to GPDs, normal EEG and low amplitude EEG. However the
same patterns were still seen.

Dynamical systems theory allows a characterization of the type of activity in
each of the EEG regimes observed in Figure 8.4, as well as of the type of transi-
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Figure 8.4: Diagram of simulated EEG patterns obtained after gradually reducing the num-
ber of glutamatergic synapses from pyramidal cells to interneurons (Nei) and the number of
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generate GPDs (red area). A further decrease inNei leads to the generation of low voltage EEG
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Figure 8.5: Top: EEG recording from a patient after cardiac arrest showing generalized
periodic discharges (GPDs). Bottom: simulated EEG showing GPDs. In thissimulation the
number of synapses from pyramidal cells to interneurons (Nei) was reduced to 90%, while the
number of synapses between pyramidal cells (Nee) was 100%.

tions through which the cortical column switches between these regimes31,32.
Although a formal mathematical analysis is outside the scope of the present
study, we provide an intuitive description obtained using numerical simula-
tions of the model equations. Both the baseline (green area) and the low-
voltage EEG (blue area) correspond to spontaneous fluctuations around a sta-
ble equilibrium voltage. This means that the EEG activity in these regimes
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is not intrinsically generated within the cortical column, but is driven by
stochastic subcortical activity impinging on cortical pyramidal neurons (see
Figure 8.1). However, while in baseline EEG, these fluctuations have a char-
acteristic frequency and correspond to physiological alpha activity20, the low-
voltage fluctuations are absent of oscillations, indicating pathological activity.
The transition from low-voltage EEG to GPDs (red area) corresponds to a
subcritical Hopf bifurcation, meaning that GPDs arise suddenly out of thelow-
voltage activity (see Figure 8.3, fifth and sixth row). In contrast, in baseline
EEG and in the neighborhood of the GPD regime, spontaneously occurring
GPDs can be observed (see Figure 8.3, second and third row), indicating
bistable dynamics. The transition from baseline EEG to GPDs corresponds
to a saddle-node bifurcation after which GPDs coexist with small-amplitude
limit-cycles in the alpha frequency range. While clearly visible in the second
trace of Figure 8.3, these alpha oscillations are barely observable in the GPD
regime since their amplitude is about 20 times smaller than the amplitude of
the GPDs. Interestingly, in the EEG traces of some patients, small-amplitude
alpha oscillations can indeed be observed (see Figure 8.2(a) and (f)).

Pathophysiological mechanisms
In this section we describe the electrophysiological mechanisms that are sug-
gested by the model to underlie the generation of ischemia-induced GPDs. Fig-
ure 8.6(a) shows the average membrane voltage of the population of pyramidal
neurons during one cycle of the GPDs. To get a clear view of the dynamics, we
also plotted the currents entering the population of pyramidal neurons. Specif-
ically, we show the passive membrane current (green line), the net synaptic
current (blue line), and the total current (red line) of this population. Note that
the net synaptic current is comprised of the current due to axonal projections
from the inhibitory population and from the pyramidal population itself. In
this simulation, we set the afferent inputs to the cortical column to zero, so
the total current is the sum of the membrane currents and synaptic currents
only. A first observation is that GPDs can be generated within cortical tissue
even in the absence of non-specific afferents. In particular, since the dynamics
of the pyramidal voltage is not driven by afferent fluctuations, GPDs are self-
sustained and autonomously generated within local cortical tissue.

Figure 8.6(b) schematically depicts the chain of events taking place in the
modeled cortical column during one cycle of the GPDs. Starting at the rest-
ing membrane voltage, the loss of excitation of cortical interneurons due to
selective ischemia-induced synaptic failure leads to disinhibition of pyramidal
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Figure 8.6: Putative physiological mechanisms underlying the generation of ischemia-induced
GPDs. A, Mean membrane voltage of the pyramidal population (black line), together with the
intrinsic (green line), synaptic (blue line), and total current (red line) arriving at the cell bodies
during one period of the GPDs. In the simulations we used the baseline parameter values except
we set the afferent inputs to the cortical column to zero (pne=pni=σ

p
ek=σ

p
ik=0). Since these

parameter changes shifted the threshold for GPDs generation fromNei≈96% toNei≈105%, we
setNei=100%. B, Chain of events taking place in the modeled cortical column duringone cycle
of the GPDs.

neurons and therefore to higher excitation of interneurons. However,since
GABAergic synapses act faster than glutamatergic (or AMPAergic) synapses
this initially results in a gradual depolarization of the pyramidal neurons (I).
When the depolarization is large enough, the non-linear activation properties
of the pyramidal neurons lead to pathological self-excitation (II), resulting in
excessive firing-rates (III). This is reflected in the membrane voltage bya high
peak. Due to a changing balance between excitation and inhibition of the
pyramidal neurons (IV), which can be seen by the steep decrease in incoming
synaptic current, the pyramidal neurons are rapidly hyperpolarized (V), which
leads to the near absence of firing in the cortical column. This is reflected in the
pyramidal membrane voltage by a deep trough, close to the reversal potential
of chloride, which is about –90 mV. Since inhibition has now worn off, the
passive membrane current leads to a gradual repolarization of the membrane
potential (VI) until it reaches the resting membrane voltage from where the
cycle repeats itself.
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Discussion
In this meanfield model of cortical dynamics we show that selective reduction
of excitatory (glutamatergic) input to inhibitory cortical interneurons leads to
GPDs. The frequencies and shapes of the waveform of the simulated GPD
patterns qualitatively matched those of GPDs in patients after acute cerebral
ischemia. Further reduction of the number of glutamatergic synapses to in-
hibitory interneurons rapidly resulted in low-voltage EEGs, which are regu-
larly encountered in these patients30,33,34. Mere reduction of glutamatergic
synapses to excitatory pyramidal cells did not result in GPDs.

Our findings support the hypothesis that GPDs after cerebral ischemia may
result from selective ischemic damage of excitatory synapses on inhibitory
interneurons. The modeling carried out in this study suggests that this selec-
tive synaptic failure leads to the emergence of GPDs via a disinhibition of
pyramidal neurons. This finding that networks with weakened or reduced ex-
citatory synapses can lead to epileptiform activity was described previously in
a computational model and confirmed in an experimental study in neocortical
slices of mice35. This idea of reduction of excitatory activity as a possible
pathway for epileptiform activity is in contrast with the general thought that
epileptiform activity is caused by an increased excitation or decreased inhi-
bition. The notion of excitation as a remedy against epileptiform activity has
been supported by a case report on an 11-year old patient with idiopathicchild-
hood occipital epilepsy of Gastaut. In this patient various additional stimuli
suppressed epileptiform discharges36.

High ischemic vulnerability of glutamatergic relative to GABAergic synapses
has been demonstrated previously in vitro: in rat hippocampal slices, anoxia
affected evoked excitatory more than inhibitory postsynaptic currents16,17,19.
Even more specifically, anoxia particularly affected excitatory input to in-
hibitory cortical interneurons, leading to elimination of inhibitory cortical
input17. However, this study was performed in slices of the CA1 region of
rat hippocampus. Whether this also applies to the interneurons in the cortex
is unknown. Moreover there are several types of cortical interneurons with
different types of synaptic connections. Therefore, our model represents a
simplification of only part of the complex network dynamics in the cortex
presumably playing a role in the generation of GPDs.

As reduced glutamatergic input to inhibitory interneurons results in an overall
increase in excitation of cortical networks, the proposed mechanism suggests
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that the network mechanisms underlying the generation of GPDs are similar
to those involved in the generation of certain types of seizure activity. This is
supported by the strong association between GPDs and non-convulsiveseizure
activity: in more than 25% of patients with GPDs, non-convulsive seizures or
status epilepticus is diagnosed3.

GPDs are not only observed in patients after cerebral ischemia. Other condi-
tions include acute brain injury, acute systemic illness, metabolic disorders and
epilepsy3,7. It is unclear, if selective synaptic failure is present in these patients
too. However, in these conditions mitochondrial function is supposed to be
affected37,38, and selective synaptic dysfunction of glutamatergic synapses due
to energy depletion is then indeed a candidate mechanism.

The meanfield model used in this study provides a direct link with the EEG.
In our study, the frequency and shape of GPD waveforms were qualitatively
similar to those from patients after cardiac arrest. However, there were some
morphological differences in the time-series. A partial explanation could be a
lack of spatial conduction effects in the model’s time-series20,39, which unfor-
tunately can not be studied in this simplified meanfield model. Investigation
of this issue requires the use of the full spatio-temporal model in combination
with a forward model of the EEG40. Second, a global parameter search for
GPDs within the currently used model could lead to GPDs with varying wave-
forms. Such a search has been performed using the full spatio-temporalmodel
in the context of modeling the effect of anesthetic agents27.

In patients after cardiac arrest GPDs are typically observed over largeparts
of the cortex and are bilateral synchronous1–3. One of the limitations of this
model is that we cannot explain this aspect of GPDs. To study GPDs recorded
from different electrodes, the use of a full spatio-temporal model of the hu-
man cortex is needed20,41,42. Alternatively, synchronization between GPDs
recorded from various cortical regions could be mediated through thalamocor-
tical feedback loops, which are known to be involved in the generation of both
physiological and pathological rhythms in the brain43 and could be studied in
a thalamocortical model44. The contribution of such a thalamocortical loop
in the synchronization of GPDs indeed remains possible as in our study all
eight patients showing GPDs had preserved early cortical SSEP responses,
suggesting that the thalamocortical loop in these patients was still, at least
partially, intact45. However, the meanfield model we use does not contain
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such a thalamocortical loop. Therefore the effect of the thalamocortical loop
on synchronization of GPDs cannot be studied using this model.

Depression of glutamatergic synapses may also affect the early cortical SSEP
response: the N20 is generated in the primary somatosensory cortex46,47 and
its presence depends on an intact functioning of the thalamocortical gluta-
matergic synapses on pyramidal cells in area 3B45,48. Most likely, however,
these synapses are relatively resistant to hypoxic incidents as in some patients
preserved early SSEPs were recorded while the EEG was essentially isoelec-
tric45. Our current clinical data support the hypothesis that the glutamatergic
thalamocortical synapses are more resistant to hypoxic incidents than the in-
tracortical glutamatergic synapses (Nei), as in all our patients SSEPs (N20)
were preserved, as well. However, to simulate changes in morphology of
the early (N20) or late (>20 ms) SSEP components, would require further
detailed modeling of cortical architecture, including the differential functional
dependence of relevant synapses on ATP depletion. This falls outside the scope
of the current contribution.

Ischemic synaptic damage is initially located presynaptically and is associ-
ated with impaired transmitter release14,49. Post-synaptic receptors are still
functioning at that time. This explains why treatment with anti-epileptic drugs
can result in a suppression of GPDs. If the presynaptic damage is irreversible,
GPDs may recur after withdrawal of treatment, which is indeed often observed.

In conclusion, after cerebral ischemia, GPDs probably result from highly se-
lective synaptic damage of glutamatergic synapses of excitatory pyramidal
cells on inhibitory cortical interneurons. Disinhibition of cortical pyramidal
neurons is a likely mechanism. Since this selective damage is likely irre-
versible, it may explain why treatment of GPDs with anti-epileptic drugs ap-
pears futile in most patients.
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Appendix A: Model equations and baseline values
In this section we give a short mathematical description of the computational
model of localized cortical dynamics employed in this study20. The model de-
scribes the dynamics of the average membrane potentials of a cortical macro-
column comprised of pyramidal neurons and interneurons. Below, the indices
e and i refer to pyramidal- and interneurons, respectively. The membrane
potentials are denoted byVk(t) for k=e, i. Their dynamics are governed by
the following set of differential equations

τe
dVe

dt
=Vrest

e − Ve(t) + Ψ
e
AMPA Iee(t) + Ψ

e
GABA I ie(t) + Ψe

AMPA Ine(t),

(8.A.1)

τi
dVi

dt
=Vrest

i − Vi(t) + Ψ
i
AMPA Iei(t) + Ψ

i
GABA I ii (t) + Ψ

i
AMPA Ini(t),

(8.A.2)

where τk and Vr
k, respectively, denote the membrane time-constants and

resting-potentials andIkl is proportional to the current flowing into populationl
due to activity of populationk. The currentsIne andIni model the afferent non-
specific input to the cortical column and are modeled as uncorrelated white-
noise processes with mean valuespne andpni and standard-deviationsσp

ne and
σ

p
ni.

The currentsIkl are given by

Ikl(t) = hGABA ⊗ NklSk(Vk(t)), (8.A.3)

where
hGABA(t) = tHGABAγGABA exp(1− γGABA t) (8.A.4)

is the response function of GABAergic receptors located on the dendrites
of neurons within populationl, which has rate-constantγGABA and efficacy
HGABA and similarly for AMPAergic responses. The parameterNkl denotes
the number of synaptic contacts on populationl from axonal projections of
populationk. The functionSk relates the membrane potential of populationk
to its firing-rate and is given by

Sk(Vk) =
Qmax

k

1+ e−
√

2(Vk−Vspike
k )/σk

, (8.A.5)
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Table 8.A.1: Model parameters, their symbols, and baseline values. The indexk refers to
neural population of typek=e, i.

Parameter Symbol Baseline value

Maximum spike-rate Qmax
k 500 s−1

Spike-thresholds Vspike
k –50 mV

Standard deviation of spike-thresholds σk 5 mV
Synaptic efficacies HGABA ,HAMPA 0.71 mV
Reversal potentials EGABA ,EAMPA –90, 40 mV
Number of synaptic contacts fromk to l Nei,Nee,Nie,Nii 3000, 3000, 500, 500
Membrane time-constants τe, τi 0.094, 0.042 s−1

Resting potentials Vrest
k –70 mV

Synaptic rate-constants γGABA , γAMPA 65, 300 s−1

Non-specific firing-rates pne, pni 3460, 5070 s−1

Standard deviation of non-specific fluctuations σp
ne, σ

p
ni 1000, 0 s−1

whereQmax
k andVspike

k denote, respectively, the maximal firing-rate and spike-
threshold of populationk and σk denotes the standard-deviation of spike-
thresholds over populationk.

The variablesΨk
AMPA andΨk

GABA are dimensionless and model the dependence
of AMPAergic and GABAergic synaptic conductance on the membrane poten-
tial of the post-synaptic neural populationk. They are given by

Ψk
AMPA(Vk) =

EAMPA − Vk

|EAMPA − Vr
k|
, (8.A.6)

whereEAMPA denotes the reversal-potential of this receptors type, and simi-
larly for GABAergic synaptic transmission. The baseline values for all model
parameters were taken from20 and are listed in Table 8.A.1.

References
[1] Hirsch LJ, Brenner RP, Drislane FW, So E, Kaplan PW, Jordan KG, et al. The

ACNS subcommittee on research terminology for continuous EEG monitoring:
proposed standardized terminology for rhythmic and periodic EEG patterns en-
countered in critically ill patients.J Clin Neurophysiol, 2005; 22:128–135.

[2] Hirsch LJ. Classification of EEG patterns in patients with impaired conscious-
ness.Epilepsia, 2011; 52 Suppl 8:21–24.

[3] Foreman B, Claassen J, Abou Khaled K, Jirsch J, AlschulerDM, Wittman J,
et al. Generalized periodic discharges in the critically ill: A case-control study
of 200 patients.Neurology, 2012; 79:1951–1960.

[4] Hirsch LJ, LaRoche SM, Gaspard N, Gerard E, Svoronos A, Herman ST, et al.
American Clinical Neurophysiology Society’s Standardized Critical Care EEG



8

144 Chapter 8

Terminology: 2012 version.J Clin Neurophysiol, 2013; 30:1–27.
[5] Chong DJ and Hirsch LJ. Which EEG patterns warrant treatment in the critically

ill? Reviewing the evidence for treatment of periodic epileptiform discharges
and related patterns.J Clin Neurophysiol, 2005; 22:79–91.

[6] Brenner RP. How useful is EEG and EEG monitoring in the acutely ill and how
to interpret it?Epilepsia, 2009; 50 Suppl 1:34–37.

[7] Brenner RP. Is It Status?Epilepsia, 2002; 43:103–113.
[8] Bauer G and Trinka E. Nonconvulsive status epilepticus and coma.Epilepsia,

2010; 51:177–190.
[9] Scheuer ML. Continuous EEG monitoring in the intensive care unit.Epilepsia,

2002; 43 Suppl 3:114–127.
[10] Husain AM, Mebust KA, and Radtke RA. Generalized periodic epileptiform

discharges: etiologies, relationship to status epilepticus, and prognosis.J Clin
Neurphysiol, 1999; 16:51–58.

[11] San-Juan OD, Chiappa KH, Costello DJ, and Cole AJ. Periodic epileptiform dis-
charges in hypoxic encephalopathy: BiPLEDs and GPEDs as a poor prognosis
for survival. Seizure, 2009; 18:365–368.

[12] Rossetti AO, Oddo M, Liaudet L, and Kaplan PW. Predictors of awakening
from postanoxic status epilepticus after therapeutic hypothermia. Neurology,
2009; 72:744–749.

[13] Rosen AS and Morris ME. Anoxic depression of excitatoryand inhibitory post-
synaptic potentials in rat neocortical slices.J Neurophysiol, 1993; 69:109–117.
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General Discussion

In 50–60% of patients treated with therapeutic hypothermia after cardiac ar-
rest, consciousness never returns1,2. Early identification of patients with poor
neurological outcome can prevent continuation of futile medical treatment,
decreases ICU stay and medical costs, and shortens the time of uncertainty
for the patient’s family. Early and reliable prognostication is therefore highly
relevant. However, neurological evaluation is limited in patients treated with
hypothermia. Several studies showed that the use of clinical and biochemical
parameters, such as the motor score, have become unreliable as prognostic pa-
rameters since the introduction of therapeutic hypothermia3–8. Imaging meth-
ods only visualize structural damage, while functional failure is not assessed.
The EEG directly measures the spontaneous electrical activity of the brain
through the skull and reflects the functioning of cortical synapses9, which is
the process that is the most sensitive for ischemia10.

A new application of an old method
The EEG is a very old measurement tool. In 1924, Hans Berger already
recorded the first human EEG on his son11,12. So why is the EEG until now
not routinely used in patients after cardiac arrest? Before the introduction
of hypothermia in 2002 as a treatment for comatose patients after cardiac ar-
rest13,14, patients received no sedation and clinical parameters were reliable for
the prediction of poor neurological outcome15. The need for other parameters
for outcome prediction, therefore, strongly increased since the introduction of
hypothermia. While most clinical and biochemical markers become unreliable,
we show that the EEG during hypothermia can still reflect the neurological sta-
tus of the patient and predicts neurological outcome at an early stage. Within
the period of hypothermia the patterns that can be observed in patients with
both poor and good outcome show characteristic evolutions. The prognostic
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value of these EEG changes is critically dependent on the time since cardiac
arrest. Therefore, this evolution can only be observed when the right points in
time are monitored, preferably with continuous EEG registrations.

Effect of hypothermia and sedation on the EEG
Although hypothermia can affect the EEG at temperatures below 30◦C, the
effect of mild hypothermia (33◦C) on the EEG is relatively small, with only
small shifts in frequencies16,17. The EEG changes to a burst suppression pat-
tern around 25◦C and electrocerebral silence appears around 18◦C17. Also, the
use of anaesthetics can influence the EEG, however these influences are well
known. In the relatively low dosages that were used in our patients, the EEG
remains continuous, with anteriorization of the alpha rhythm18,19. Patterns we
found to be associated with poor outcome cannot be solely drug induced in our
patients.

EEG rhythms in postanoxic coma
While measuring the EEG in patients after cardiac arrest, a rich variety in
rhythms can be observed that evolve over time. Patients with good outcome
can initially show iso-electric EEGs or low-voltage EEG patterns, which re-
cover relatively fast within the period of hypothermia to a burst-suppression
or a continuous pattern. This improvement in EEG rhythms in patients with
good outcome is most likely a reflection of synapses which recover from
reversible damage. Other patients with good neurological outcome almost
immediately show a continuous EEG pattern with relatively fast frequencies.
Patients with poor outcome show initially iso-electric patterns, low voltage or
burst-suppression patterns. Their EEGs do not improve at all, or at a much
slower timescale in comparison to patients with good outcome. The rate of
improvement is therefore very important for the outcome and presumably re-
flects the reversibility of the cortical damage. Some patients with poor outcome
even show deterioration of their EEG patterns, which might reflect secondary
ischemic injury including cell swelling and cell death.

A first classification of the EEG background pattern and the evolution over
time is highly relevant for the prediction of neurological outcome in patients
after cardiac arrest. Therefore, the analysis of continuous EEG measurements
should be focused on theevolutionin EEG background patterns. This requires
a different and less intensive approach of visual analysis in comparison to the
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visual analysis of a 20 min routine recording in which each page of 10 seconds
of EEG is extensively reviewed.

Prediction of poor neurological outcome
In our first cohort study of 60 patients, described in Chapter 2, we showed
that EEGs with an iso-electric or low-voltage pattern at 24 hours after cardiac
arrest reliably predict poor neurological outcome with a sensitivity of 40%
and a 100% specificity. In contrast, the sensitivity for bilateral absence of
the SSEP was only 24%. Also, burst-suppression patterns at 24 hours were
associated with poor neurological outcome, but not inevitably so, since some
of the patients with good neurological outcome had a burst suppression pattern
at 24 hours after cardiac arrest. However, we discovered that many different
types of burst-suppression patterns exist and that a subclassification of burst-
suppression patterns might be useful. In Chapter 3 we show that “burst-
suppression with identical bursts” is a distinct pathological EEG pattern in
which shapes of subsequent bursts are identical. Burst-suppressionwith iden-
tical bursts was in our series only observed in patients after diffuse cerebral
ischemia and was inevitably associated with poor outcome.

To test our findings that EEGs with iso-electric patterns, low voltage patternsor
burst-suppression patterns with identical bursts at 24 hours after cardiac arrest
are associated with poor neurological outcome, we evaluated a larger cohort of
148 patients. The results are given in Chapter 4. We found that this combined
group of severe EEG patterns at 24 hours after cardiac arrest is associated with
poor neurological outcome with a sensitivity of 48% and a specificity of 100%.

Prediction of good neurological outcome
The EEG can be used for the prediction of good neurological outcome as well.
In the first group of 60 patients (Chapter 2), we found that at 12 hoursafter
resuscitation, 43% of the patients with good neurological outcome showed
continuous, diffuse slowed EEG rhythms, while non of the patients with poor
neurological outcome showed one of these rhythms within 12 hours after car-
diac arrest. In the larger group of patients described in Chapter 4 we still found
that normal or diffuse slowed EEG patterns at 12 hours after cardiac arrest are
associated with good neurological outcome with a sensitivity of 57%. Unfor-
tunately, there where two patients with poor neurological outcome showing
a diffuse slowed EEG pattern at 12 hours after cardiac arrest, resulting in a
specificity of 96%. However, both patients died because from cardiac problems
and not from postanoxic encephalopathy.
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Self-fulling prophecy
A problem in all unblinded studies on the prediction of neurological outcome
is the so called “self-fulfilling prophecy”20–22. In an ideal study the treating
physicians are completely blinded to all EEG and SSEP registrations and treat-
ment should not be limited or withdrawn in any patient included in the study.
However, this is considered as unethical. In our study, the treating physicians
were not completely blinded to the EEG and SSEP registrations, which may
have influenced the clinical decision making. Standard guidelines on patients
treatment, including guidelines on the continuation of treatment, were strictly
followed. According to these guidelines, the EEG at 24 hours was not used
for treatment decisions. Furthermore, visual classification of the EEG patterns
was performed offline. Therefore the likelihood of a self-fulfilling prophecy is
expected to be very small.

Treatment of electroencephalographic status epilepticus
The increased use of EEG monitoring leads to an increased detection of elec-
troencephalographic seizures and status epilepticus. However, it is currently
unknown whether these patterns reflect epileptic activity that can be treated
with anti-epileptic drugs to improve patients’ outcome, or rather severe is-
chemic damage, in which treatment is futile23–27. In Chapter 5 we showed in a
retrospective study that moderate treatment with anti-epileptic drugs does not
improve outcome of patients with electroencephalographic status epilepticus
after cardiac arrest. Since no strict treatment guidelines existed for epilepti-
form activity in these patients, both the nature and the intensity of treatment
varied among physicians, however treatment was mostly moderate started at at
a median of 47 hours after cardiac arrest. Whether these patients would benefit
from earlier and more aggressive treatment warrents further research.

The diagnosis of status epilepticus on the electroencephalogram (EEG) in
comatose patients after cardiac arrest is controversial24,28. It may consist of
unequivocal seizures: generalized spike-wave discharges at 3/s or faster or
clearly evolving discharges of any type at 4/s or faster, either generalized
or focal29. However, some experts also consider other rhythmic or periodic
patterns, such as generalized or lateralized periodic discharges or rhythmic
delta activity, as seizure activity27,28. In Chapter 8 we showed by using a
computational model, that generalized periodic discharges (GPDs) may result
from selective synaptic damage. Therefore, GPDs observed in patientswith
postanoxic encephalopathy might represent severe ischemic damage instead of
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ictal activity. However, it is currently unknown whether this ischemic damage
of synapses is potentially reversible and whether treatment with anti-epileptic
drugs may promote recovery.

Quantitative EEG analyses
Quantitative EEG analysis can assist in decreasing the time needed for visual
interpretation of long EEG recordings and in making the visual analysis more
objective25,30–32. In Chapter 6 we implemented an automatic system for real-
time classification of the EEG in critically ill patients in the ICU. A user in-
terface was developed to present both trend-curves and a diagnostic output in
text form. In Chapter 7 we introduced the “Cerebral Recovery Index (CRI)”,
which is a score ranging from 0 to 1 that can be used for grading of EEGsin
patients with postanoxic encephalopathy. Both systems are ready for online
use in the ICU. We showed that the use of both systems is feasible. The use
of these systems in the clinical setting still has to be evaluated and most likely
the user interfaces of both systems have to be adapted. In further development,
it is important to keep in mind that the systems are not primarily designed to
replace visual analysis33–35. Instead, quantitatively EEG analysis should be
used to assist in the visual analysis by detecting changes in the EEG and by
making a first rough classification of the EEG.

Computational modelling of specific EEG patterns
The EEG measures spontaneous cortical activity, and is a reflection of the
synaptic activity of the pyramidal cells in the cortex9. More detailed under-
standing of the generation of specific EEG patterns could increase the insight
in the pathological processes of ischemia. In an ideal situation, the EEG gives
patient specific information about the location and severity of the brain injury
and whether this information is reversible or not. Computational modelling
could help to evaluate which brain abnormalities are reflected by each specific
EEG pattern. In Chapter 8 we showed that GPDs might be a reflection of
selective ischemic damage of glutamatergic synapses.

Future perspectives
The results of the use of EEG for the prediction of neurological outcome
are very positive and seem to be robust. The prospective cohort study we
performed can be interpreted as a class 1 study according to the definitionsfor
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levels of evidence given by the Oxford Centre for Evidence-based Medicine36.
In the future, EEG within 24 hours after cardiac arrest should be part of stan-
dard post cardiac arrest care. However, before the evidence reaches a level A
and clinical guidelines will be changed, an additional independent, preferably
multi-centre, study is necessary to confirm our results. Confirming the results
in a larger cohort will also tighten the 95% confidence interval.

Another relevant issue concerns the inter-observer-agreement bothin offline
analysis and in real-time situations. The interobserver agreement of standard-
ized terminology for the description of rhythmic and periodic EEG patterns is
known to vary from high or moderate to even slight or fair, with higher values
for the main terms and lower values for the more complex, subtle and optional
terms37,38. Since for the prediction of neurological outcome we look at the
background pattern, and the categories we used were defined in a veryclear
manner, we expect that the interobserver agreement will be high. Furthermore,
we also showed that it is possible to quantify the differences in EEG patterns.
Still, great care should be taken in the interpretation. The classification of iso-
electric and burst suppression EEGs with similar bursts is relatively straight-
forward. However, there might be discussion in some cases of low voltage
EEG patterns that are just above or just below the limit of 20µV.

The prognostic value of EEG might be increased with further characterization
of burst-suppression patterns with non similar bursts. The duration of the sup-
pressions, and the shape and content of the bursts might contain information
that is relevant for the neurological prognosis39,40. Prediction may be further
improved and extended towards other points of time after cardiac arrest by
combining neurophysiological, biochemical, and clinical markers.

To answer the question whether treatment of electroencephalographic status
epilepticus, including GPDs, is indeed futile, a large randomized control study
including early and aggressive treatment is necessary.

In the domain of quantitative EEG analysis, further improvement is also pos-
sible. Current systems have to be tested in an ICU environment, since both
systems were only evaluated offline. Comments of the treating physicians on
their usage have to be studied and the user interface of both systems might
have to be improved.
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Similar to our study in which we simulated the generation of GPDs, com-
putational modelling can be used for improvement of our understanding of
other specific EEG patterns, such as burst suppression patterns with orwithout
similar bursts. Computational modelling is a great tool to test a hypothesis
or to generate a new prediction that can be tested experimentally. Therefore
computational modelling should be combined with other disciplines such as in
vitro or in vivo models or post mortem analysis.

Conclusion
This thesis shows that the EEG contains information that is useful for the
prediction of neurological outcome in postanoxic patients treated with mild
hypothermia. We show that timing of the EEG is critical and that differences
of EEG patterns between patients recovering and not recovering are especially
large in the first 24 hours after cardiac arrest. At 24 hours, the combined group
of iso-electric, low voltage, and “burst-suppression with identical bursts” was
invariably associated with poor outcome. At 12 hours, normal or diffusely
slowed EEG patterns were strongly associated with good outcome. Secondly,
we implemented two computer algorithms and we showed that quantitative
analysis can be used to assist in the interpretation of long-term EEG recordings
measured in the ICU. Thirdly, we showed that computational modelling can
be used to test a hypothesis on the generation of specific EEG patterns. Inour
computational model we showed that GPDs can be explained as a reflection of
selective ischemic damage of glutamatergic synapses.
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Summary

The electroencephalogram (EEG) contains information that is useful forthe
prediction of both poor and good neurological outcome in patients with
postanoxic encephalopathy after cardiac arrest treated with mild hypother-
mia. The combined group of iso-electric, low voltage or burst-suppression
patterns with identical bursts recorded at 24 hours after cardiac arrest reliably
predicts poor neurological outcome with a sensitivity of 48% (CI: 35–60%)
and a specificity of 100% (CI: 94–100%) (Chapters 2 and 4). In contrast,
the sensitivity for bilateral SSEP absence was only SSEP 24% (CI: 10–44%)
(Chapter 2). “Burst-suppression with identical bursts” is a distinct pathological
EEG pattern characterized by bursts with a high similarity. Burst-suppression
with identical bursts can only be seen after diffuse cerebral ischemia and is
inevitably associated with poor neurological outcome (Chapter 3). In addition,
normal or diffusely slowed EEG patterns at 12 hours after cardiac arrest are
associated with a good neurological outcome with a sensitivity of 57% (CI:
42–71%) and a specificity of 96% (CI: 86–100%) (Chapters 2 and 4).

The increased use of EEG monitoring leads to an increased detection of elec-
trographic seizures and status epilepticus. However, it is currently unknown if
and how aggressive patients with these patterns should be treated. In ourret-
rospective study, moderate treatment with anti-epileptic drugs did not improve
outcome of patients with electrographic status epilepticus after cardiac arrest
(Chapter 5).

Quantitative EEG analysis can assist in decreasing the time needed for visual
interpretation of the long EEG recordings and in making the visual analysis
more objective. We implemented two computer algorithms that can assist in
the interpretation of long EEG recordings. The first system can be used for
real-time classification of the EEG in critically ill patients. This system has
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an accuracy of 85–88% (Chapter 6). Secondly, we introduced the “Cerebral
Recovery Index (CRI)”, which is a score ranging from 0 to 1, that canbe
used for the grading of EEGs in patients with postanoxic encephalopathy. At
24 hours after cardiac arrest, a CRI< 0.29 was always associated with poor
neurological outcome, with a sensitivity of 55% (CI: 32–76%) and a specificity
of 100% (CI: 86–100%). At the same time point a CRI> 0.69 predicted good
neurological outcome, with a sensitivity of 25% (CI: 10–47%) and a specificity
of 100% (CI: 85–100%) in the test set (Chapter 7).

Finally, we showed by using a computational model that generalized periodic
discharges, an EEG pattern that can be observed in patients with post-anoxic
encephalopathy, can be explained as a reflection of selective ischemic damage
of glutamatergic synapses (Chapter 8).



0 C
ha

pt
er

Samenvatting

Het elektro-encefalogram (EEG) bevat kan gebruikt worden voor het voor-
spellen van zowel goede als slechte neurologische uitkomst in patiënten met
postanoxische encefalopathie na een hartstilstand, die behandeld worden met
milde therapeutische hypothermie. Een slechte neurologische uitkomst kan 24
uur na de hartstilstand betrouwbaar worden voorspelt op basis van de gecom-
bineerde groep van iso-elektrische, laag gevolteerde en burst-suppressie patro-
nen met identieke bursts, met een sensitiviteit van 48% (95% betrouwbaarhei-
dsinterval: 35–60%) en een specificiteit van 100% (95% betrouwbaarheidsin-
terval: 94–100%) (Hoofdstukken 2 en 4). Daarentegen, is de sensitiviteit van
een bilateraal afwezige SSEP response slechts 24% (95% betrouwbaarheidsin-
terval: 10–44%) (Hoofdstuk 2). “Burst-suppressie met identieke bursts” is een
onderscheidend en pathologisch EEG patroon, dat wordt gekarakteriseerd door
bursts met een hoge mate van gelijkenis. Burst-suppressie met identieke bursts
kan alleen worden gezien na diffuse cerebrale ischemie en is onvermijdelijk
geassocieerd met slechte neurologische uitkomst (Hoofdstuk 3). Daarnaast
zijn normale of diffuus vertraagde EEG patronen, gemeten 12 uur na de hart-
stilstand sterk geaccocieerd met een goede neurologische uitkomst, met een
sensitiviteit van 57% (95% betrouwbaarheidsinterval: 42–71%) en een speci-
ficiteit van 96% (95% betrouwbaarheidsinterval: 86–100%) (Hoofdstukken 2
and 4).

Het toegenomen gebruik van EEG monitoring leidt tot een toename in de
detectie van elektrografische insulten en status-epilepticus. Echter, op ditmo-
ment is het nog onduidelijk of en hoe agressief patiënten met deze patronen
behandeld moeten worden. In onze retrospectieve studie liet een gematigde
behandeling met anti-epileptica geen verbetering zien in de uitkomst van
patïenten met een elektrografische status-epilepticus na een hartstilstand (Hoofd-
stuk 5).
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Kwantitatieve EEG analyse kan helpen om de tijd die nodig is voor vi-
suele interpretatie van langdurige EEG registraties te reduceren en om de
visuele analyse objectiever te maken. We hebben twee computer algoritmes
gëımplementeerd die kunnen bijdragen aan de interpretatie van langdurige
EEG registraties. Het eerste systeem kan gebruikt worden voor real-timeclas-
sificatie van het EEG in patiënten op de intensive care afdeling. Dit systeem
heeft een nauwkeurigheid van 85–88% (Hoofdstuk 6). Daarnaast hebben we
de “Cerebral Recovery Index (CRI)” geintroduceerd, dit is een score van 0
tot 1, die gebruikt kan worden voor het graderen van EEGs in patiënten met
postanoxische encefalopathie. Op het tijdstip 24 uur na de hartstilstand, was
een CRI< 0.29 altijd geassocieerd met een slechte neurologische uitkomst,
met een sensitiviteit van 55% (CI: 32–76%) en een specificiteit van 100%
(95% betrouwbaarheidsinterval: 86–100%). Op hetzelfde tijdstip, voorspelde
een CRI> 0.69 goede neurologische uitkomst met een sensitiviteit van 25%
(95% betrouwbaarheidsinterval: 10–47%) en een specificiteit van 100%(95%
betrouwbaarheidsinterval: 85–100%) in de test set (Hoofdstuk 7).

Tot slot, hebben we met behulp van een computer model aangetoond dat
gegeneraliseerde periodieke ontladingen, een EEG patroon dat kan worden
gezien in patïenten met postanoxische encefalopathie, verklaard kunnen wor-
den door selectieve ischemische schade van glutamaterge synapsen (Hoofd-
stuk 8).
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